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THE EFFECTS OF SAMPLING STRATEGY ON ESTIMATES

OF THE MEAN VERTICAL VELOCITY

G. D. Nastrom

St. Cloud State University, St. Cloud, MN 56301

K. S. Gage and W. L. Ecklund

Aeronomy Laboratory, NOAA, Boulder, CO 80303

i. INTRODUCTION

The purpose of this paper is to examine the effects of

various temporal sampling strategies on estimates of the

time-mean vertical velocity from MST radar measurements.

Because the spectrum of atmospheric vertical velocity covers

a complete range of frequencies, some variance will be

missed whenever the temporal sampling is not continuous.

This unresolved, or missed, variance contributes to the

uncertainty of mean values based on the available

observations along with other effects such as aliasing of

the observed frequency spectrum. In recent years there have

been several studies which have used time-means of the

vertical velocity. For example, Nastrom, et ai.(1985),

compared time-means of vertical velocity from MST radar

measurements with large-scale values based on radiosonde

data, and Larsen, et ai.(1988), compared them with ECMWF

model forecasts of vertical velocity. Balsley, et al.

(1988) used time mean vertical velocities to study tropical

motions. Strauch, et al. (1987), found that it is important

to include the effects of large vertical motion in the

measurements of the horizontal wind components from

obliquely directed radar beams. For these and other

purposes it is important to use the sampling strategy which

will yield the mean value with the smallest possible

uncertainty under given experimental constraints, and to

estimate the magnitude of the uncertainty once a sampling

strategy is selected. This paper will explore these issues.

Data used for this study are vertical velocities from

the Flatland VHF radar. The radar operating parameters and

examples of the data are given by Green, et al. (1988).

Briefly, during the period of record used here, March

through May, 1987, the radar was operated with one beam

which was pointed vertically. Doppler spectra were averaged

for about 2.5 minutes and then recorded on tape along with

their moments. The available data are thus quasi-continuous

in time as only a few seconds gap was missed each data

processing and recording cycle. In practice, some



observations are missing due to insufficient signal-to-noise
ratio of the doppler spectrum, or other problems such as
contamination by aircraft. Also, there are occasional short
gaps due to equipment malfunction. For the analyses of
frequency spectra and the autocorrelation function given
here a segmentof data was not used at a given height if a
gap longer than i0 minutes was found.

2. STATISTICALFEATURES

The fluctuation of vertical velocity at Flatland is
primarily due to short period gravity waves. This can be
seen in the frequency spectrum (Figure i) which showsthat
most of the energy falls betweenabout i0 and 30 minutes
period. The coordinates in Figure 1 are area preserving,
i.e., the variance in a given frequency band is proportional
to the area under the curve. Fromcomparisonswith a model
of a spectrumof gravity wavessubjected to doppler shifting
by horizontal winds, Van Zandt, et al. (1989), conclude that
the observed spectrum at Flatland is due mostly to gravity
waves. This is in contrast to the spectra of vertical
velocity at locations in or near mountains where the
vertical velocity spectra showthe effects of standing lee
waveactivity as reviewed by Ecklund, et al. (1986).

Becausea large portion of the variance at Flatland is
due to relatively high frequency variations we should expect
that a relatively high sampling rate will be required to
avoid large uncertainties in meanvalues computedfrom the
observations. In Figure 1 we note that the peak variance is
found at about !2 minutes period, and in order to avoid
serious sampling problems wemight expect that observations
should be taken moreoften than about half this period.
i.e., every 6 minutes or so. A more rigorous estimate of

the time between independent observations can be obtained

from analyses of the autocorrelation function as discussed

next.

Figure 2 shows the autocorrelation function, R(t), at

Flatland at 5 km for lags less than about 15 minutes and,

for comparison, the R(t) functions at Poker Flat, Alaska,

from Nastrom and Gage (1983). R(t) can be used to estimate

the effective time between independent observations (T)

using the relation (Leith, 1973)

T = 2FG°R(t)dt

w O
(1)

where t is the lag; an important application of T is in

computing statistical significance levels (Mitchell, et al.,
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Figure i. Average of 34 spectra of vertical velocity over 48-hour

data periods at Flatland during March through September 1987, in

area preserving coordinates.

hO.

O,71

0.5

o
o 0.1

0.07-

0.03

x"

'i\ ........'

FLATLAN[ _z;

1.75 7.0 12.25 17.5 minutes

LAG

Figure 2. Autocorrelatlon function of
vertical velocity at Flatland and at

Poker Flat. See text.



1966). Nastrom and Gage (1983) found that at Poker Flat T

ranged from about 15 minutes for the curves labeled "winter

i" and "summer", which represent active periods, to about 9

minutes for the curve labeled "winter 2", which represents

quiet periods. There were not enough cases to prepare a

summer curve for quiet periods, and only the curve for

active times is shown. The curve labeled "Flatland" was

prepared by averaging the autocorrelation functions from

each six-hour period. The data were linearly interpolated

to 153-second intervals and residuals from a linear trend

line fit by least squares were used to compute R(t). Note

that the average curve at Flatland decreases more rapidly

than all curves from Poker Flat, suggesting that the

vertical velocity at Flatland has a relatively short

"memory". The semi-logarithmic plots in Figure 2 show that

an appropriate analytic model after about lag 5-minutes is

R(t) = c exp(-vt). At shorter lags the observed curves fall

above this model, suggesting that the observed

autocorrelation function is a mixed first-order moving

average, first-order autoregressive process as discussed in

more detail by Nastrom and Gage (1983). Using eq. 1 we

estimate that T at Flatland is 5.1 minutes, which is less

than for all the curves at Poker Flat. Also, we note that

this estimate of 5.1 minutes is near the 6 minutes inferred

above from Figure i. This result does not mean that

observations should be taken only each 5.1 minutes, but

rather that, on the average, independent information is

gained only at this rate. In fact, considerable uncertainty

of the mean is found when only every-other observation is

used (i.e., with data spaced about 5.1 minutes), as

discussed next.

3. EFFECTS OF SAMPLING STRATEGY

The analysis approach we will use will be to form

averages over one- ,two-, three-, and six-hour periods using

the complete set of observations. These averages will be

used as the standards for comparison. Next, the data set

will be degraded to simulate various sampling strategies and

the mean values thus obtained will be compared with the

"true" mean values based on complete data. This procedure

will give estimates of the uncertainty of measurement due to

temporal sampling strategy. There are, of course, other

sources of uncertainty, such as system limitations and the

effects of spatial averaging, which must be considered in

practice and which are beyond the scope of this study.

Four schemes were used to illustrate the effects of a

strategy which uses incomplete sampling. Three of them use

one-half of the data but in varying sized segments: the

first uses alternate observations, the second uses data for

every-other i0 minutes, and the third uses data for every-

other 30 minutes. Each of these could simulate a strategy

applied in a field experiment where, for example, the radar



was used to gather vertical data half of the time and
oblique data half of the time. The fourth strategy uses
data for the first 12 minutes of each hour, similar to the
observation cycle of the data used by Larsen, et al. (1988).
The results from these strategies will be labeled "alt obs",
"0-i0 min", "0-30 min", and "12 min" in Figures 3 and 4 and
in Table i.

RMSdifferences betweenmeanvalues based on these four
sampling strategies and the "true" meancomputedfrom all
available data are given in Figure 3 as functions of
averaging period. Twopatterns are evident in Figure 3:
first, the RMSdifferences decreasewith increasing
averaging time. This decrease is consistent with the notion
that the degradedobservation cycles are sufficient to
resolve long-period variations reflected in the left-hand
tail of the spectrum in Figure i, and that the variance due
to longer periods thus contributes to the uncertainty of the
meanonly for shorter averaging periods.

The second pattern seen in Figure 3 is that larger gaps

between data samples lead to larger uncertainty of the

estimates of the mean. This effect reflects the increased

spectral leakage caused by longer gaps as pointed out by

Baer and Tribbia (1976). They found that there is reduced

spectral fidelity for all frequencies higher than the

frequency corresponding to the longest gap in a data

sequence. The reduced spectral fidelity in the present

context leads to greater uncertainty of the estimate of the

mean value.

Finally, we note that the uncertainty of the estimate

of the mean is relatively very large when only 12 minutes of

data per hour are used. For a one-hour averaging p_riod the

RMS difference from the true mean is nearly 9 cm s -_ for

this strategy, which is over half as__arge as the standard

deviation of all data (about 14 cm s _).

Other statistical quantities can be used to illustrate

the patterns seen in Figure 3. For example, Figure 4 shows

the mean deviation, defined as the average absolute value of

the difference between the true mean and that from the

various sampling strategies, in a format similar to Figure

3. The patterns are consistent with those in Figure 3,

although the numerical values of this measure of uncertainty

are about two-thirds as large as the RMS values.

Another measure of the capability of one estimate of the

mean to track the true mean is the linear correlation

coefficient, r. Table 1 gives the values of r over N pairs

of means with the true mean for the same averaging times and

sampling strategies used in Figures 3 and 4. The percentage

of variance in one variable explained by another is given by

i00 r _. Applying the results in Table 1 shows that for all
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Table i. Correlation of mean values from different sampling

strategies with the "true" mean value.

AVERAGING

PERIOD 1 hr 2 hrs 3 hrs 6 hrs

N 1951 652 652 308

ALT OBS 0.94 0.95 0.96 0.97

0-i0 MIN 0.87 0.90 0.91 0.94

0-30 MIN 0.82 0.86 0.88 0.90

12 MIN 0.62 0.68 0.73 0.80



averaging periods the strategy of using alternate 2.5-minute
data intervals accounts for 90 percent or more of the
variance of the true meanin all cases here, while using
every-other 10-minute period accounts for over 80 percent of
the variance for averaging periods of 2 hours or more. At
the extreme, using only the first 12 minutes of each hour
the estimates of the meansaccount for less than 50 percent
of the variance of the true meanexcept for the 6-hour
averaging period. These results showthat the uncertainty
of estimates of the meanvertical velocity is minimized when
the average length of gaps in the data is minimized.

4. CONCLUSIONS.

Analysis of vertical velocities measuredby the Flatland
MSTradar during the spring of 1987has led to the following
conclusions:

i. The autocorrelation function of vertical velocity

resembles that expected for a mixed first-order moving-

average, first-order autoregressive process.

2. The average time between independent observations in

the data from Flatland used here is about 5 minutes.

3. The uncertainty of the mean value of vertical

velocity decreases as the averaging period used to compute

the mean increases.

4. The uncertainty of the mean value of vertical

velocity increases as the length of gaps in the data

increases. Because of this effect, every effort should be

made to minimize gaps in samples of vertical velocity in

future field programs.

These results are concerned only with temporal sampling,

and in practice other effects such as instrument errors may

require attention. In particular, they are based on data

from a single station, and neglect any sampling

uncertainties which might arise from spatial variability.

It remains as a future experiment to compare averages from

nearby stations as functions of averaging time, sampling

strategy, and other variables to study such effects.
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A METHOD FOR SINGLE-RADAR VORTICITY MEASUREMENTS?
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INTRODUCTION

A common mode of operation for conventional meteorological precipitation radars has been the VAD

(Variable Azimuth Display) method in which the antenna is kept at a constant zenith angle but

scanned in azimuth. The measurements then provide the line-of-sight velocity as a function of azimuth

for the particular elevation used in the scan. BROWNING AND WEXLER (1968) and WILSON AND

MILLER (1972) have discussed the various flow-field parameters that can be derived from the

measurements in some detail. For example, the best fit of the first harmonic to the line-of-sight

velocity variation over 360" gives the direction and magnitude of the mean wind over the sampled area.

The average of the line-of-sight velocities, i. e., the zeroth harmonic, indicates either a vertical velocity

or a divergence in the horizontal flow. Tbe wind fie]d deformation can also be calculated from the

measured parameters by using the best fit harmonic parameters. In theory, higher harmonics can be

used to derive information about the second and higher order derivates of the flow over the sampled

area, but the information has never been used in practice, to my knowledge.

Although the VAD technique provides a wealth of data, there are two disadvantages to the method.

The first is that there is an ambiguity between the divergence and vertical velocity contribution to the

measurements. The second is that the method does not provide any measurement of the vorticity,

which is another fundamental flow-field parameter.

RADAR NETWORK VORTICITY MEASUREMENTS

The reason for the lack of information about the vorticity in a VAD measurement can be understood

by considering the method for calculating the divergence and vorticityfrom wind measurements over a

network consisting of balloons, radars, or other instruments that provide vector winds at a seriesof

locations. We can use Stokes' Theorem to write

fVxV.d-g =/V.dY (i)

where V is the horizontal velocity and the integration for the line integral on the right is perimeter of

the area used in the integral on the left. The vorticity on the left-hand-side of the equation can be

brought outside the integral if the value is constant over the area. Then
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(2)

where A is the total area and i_ is a unit vector pointing vertically upward. If the vorticity is not

constant, the calculated value becomes the average value over the area enclosed within the line integral.

A similar expression can be used to calculate the divergence of the horizontal wind, namely

vv _- i3/

where I_ is a unit vector in the positive vertical direction. At least three vector wind measurements in

a triangular array are needed to calculate the vorticity and divergence. The former quantity is then

proportional to the line integral of the velocities around the triangle, and the latter quantity is

proportional to the integral of the velocity component perpendicular to the line segments that define

the triangle. The method can easily be extrapolated to include more than three stations.

If we consider a single radar instead of a nei, work, equation (3) shows that the VAD measurement

provides a measure of the divergence because the velocity component measured by the radar is always

perpendicular to the direction in which it is scanning so that VxdT is obtained. Equation (2) requires

the velocity component perpendicular to the beam direction, a quantity not provided by the VAD

technique.

SPACED ANTENNA VORTICITY MEASUREMENTS

The discussion so far has focused on the VAD technique which usually involves measurements at a

large number of azimuths with a mechanically-steered antenna. However, the Doppler method used in

most MST radar or wind profiler measurements is in essence a simplified VAD. The number of

independent beam directions then determines the number of flow field parameters that can be derived

from the measurements. MST radars often utilize a vertical beam which gives the vertical velocity

directly from the Doppler shift, and thus eliminates the vertical velocity/divergence ambiguity which is

characteristic of precipitation radar VAD measurements. When the scattering is from precipitation, a

vertical beam is not useful in resolving the ambiguity since the vertical velocity is the fall velocity of

the precipitation and is not related to the divergence in the horizontal flow field. At least three off-

vertical beams pointed along different azimuths are needed to measure the divergence in the horizontal

flow, although often pairs of north/south and east/west beams are chosen in practice.

The Doppler method used for MST radar wind profiling cannot be used to obtain information about
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thevorticitysince it is a simplified form of the VAD method, and the latter technique provides no

information about the rotation in the flow. Besides the considerations in the previous section, we can

reach the same conclusion by considering a five-beam system directly. One beam is vertical and serves

to eliminate the vertical velocity contamination in the off-vertical beams. The other beams are at the

same off-vertical angle and pointed along the east, west, north, and south directions. The vertical

component of the vorticity is given by

i,.(VxV) - 0v 0u (4)- _ 0y

where u and v are the eastward and northward velocity components, respectively. The coordinate

system is such that x is positive toward east and y is positive toward north. The eastward and

westward beams give information about the variation in the u velocity component but only along the x

direction. The northward and southward beams give information about the variation of the v

component but only along the y direction. Rotating the coordinate system in the horizontal plane

obviously does not change the situation.

The spaced antenna technique has been described in detail by Larsen and RSttger (1989) and references

therein. The method uses the cross-correlation of the signal in at least three spaced receivers deployed

in a triangular array to determine the horizontal velocity of the diffraction pattern in the medium

overhead. The diffraction pattern is created by the turbulent variations in the refractive index.

Therefore, to the extent that the Taylor hypothesis holds, and the turbulence moves with the mean

wind, the measurement gives the horizontal wind velocity. The Taylor hypothesis is also assumed to

hold in the Doppler method measurements. The advantage of the spaced antenna method for vorticity

measurements is that the velocity components obtained are perpendicular to the beam direction, and,

therefore, would appear to be useful in the expression given in equation (2).

A triangular array is most common in spaced antenna measurements. First, consider three receiving

antennas aligned so that one is at the origin of the coordinate system and the other two are spaced

along the x and y axes. The diffraction pattern velocities measured along the x and y axes are then

related to the flow velocity by the expressions (e. g., BRIGGS, 1984)

_ v (Sa)Vx-s-i_n_

v - v (5b)y-_
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where V is the magnitude of the flow velocity and ¢ is the direction of the flow measured from north.

The trace velocities are derived from the lag at which the cross-correlation in the signal in two of the

antennas maximizes. The relevant expressions are

-dx (6a)Vx-_ x

dy
Vy =_-_ (6b)

where dx and dy are the separation of the antennas in the x and y directionsand T x and ry are the

respectivelags.

If dx=dy=d, which we will assume for the remainder, we have the following relationships,

Tx
tan¢= _-_ (Ta)

sine = rx (7b)

(rx2+ry2) 1/2

cos¢----- ry (7c)

(VX2q-Vy2) 1/2

The velocity components are then given by

vx =V.sin¢ =d rx
rx_+ry 2 (8a)

Vy = V.eos_ = d ry (Sb)
rx2+ry _

The remaining analysis could be carried out by considering the three-antenna system, but a four-

antenna system of the type shown schematically in Figure 1 will be used instead to simplify the
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Rx D

Rx C

3 2

Rx A

Rx B

Figure 1. Schematic showing spaced antenna system with four receiving antennas labeled A, B, C, and

D. The dashed lines join the points midway between two adjacent receiving antennas. The path of

integration for the vorticity and divergence calculation is along the square outlined by the dashed lines.
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expressions. The corresponding expressions for three spaced antennas will be of the same form but with

different multiplicative factors.

Each combination of three receiving antennas (ABC, BCD, CDA, and DAB) yields the horizontal

vector velocity representativeof a point somewhere along the linesthat connect the midpoints between

the antennas, shown by the dashed linesin Figure I. If the x axis is aligned parallel to the D-A

directionand the y axis isaligned parallelto the D-C direction,the velocity component parallel to the

dashed linesegment 4-I,for example, willbe given by

Vdiag= Vx-COS 45" + Vy.COS 45"

(9)

Then for one side of the embedded square defined by the dashed lines, the contribution is

(]0)

Sum the contributions from the four sidesand divide by the area of the embedded square to get

i=l \ri2+ri+l 2]
(11)

where rl, for example, isthe lag from Antenna A to Antenna B. The lags are taken to be positive in

the counterclockwise sense from A to B, B to C, C to D, and D to A.

The spaced antenna vorticity measurements can be understood more directly by considering a flow

directed from left to right in Figure 1. Rotation in the flow implies that the velocities in the upper half

of the figure must be faster or slower than the velocities in the lower half. Antennas BCD will then
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provide a velocity measurement that is different from the DAB measurement, and the difference

between the two measurements is related to the vorticity in the flow.

The expression for the divergence involves the component of the velocity perpendicular to each of the

four sides and leads, by similar arguments, to the expression

/
i=l _,ri2+ri+l _]

(12)

The entire derivation has used the so-called apparent velocities which are valid if the refractivity

pattern does not fade significantly during the time required for the pattern to move from one antenna

to the next. VINCENT et al. (1987) have shown that the difference between true and apparent

velocities becomes significant in the upper troposphere and above. The vorticity measurement is the

same in principle if the appropriate corrections are made for the pattern fading, although the

expressions become more complicated.

CONCLUSION

The technique outlined here appears to have potential for single-radar vorticity measurements.

Vorticity and divergence measurements with a network of radars is acceptable in many cases when the

scale sizes of interest are larger than or comparable to the spacing of the radars in the network, but for

studies of the dynamics of small-scale phenomena, such as the mixing in tropopause folds or the

turbulent dissipation associated with the breakdown of small-scale waves, a technique that uses a single

radar is needed. While the method is straightforward in principle, it remains to be seen if the

measurement will be meaningful in practice when the measurement errors are taken into account.

There has been considerable debate in recent years about the differences and similarities between the

spaced antenna and Doppler methods for wind profiling. Several studies have shown that the spaced

antenna method provides wind information of quality comparable to the Doppler method. Arguments

about the anticipated advantages of spaced antenna systems have been presented, but, while the

arguments seem reasonable, no detailed studies have been carried out to show that the advantages are

real. The vorticity measurement capability appears to constitute a clear difference between the spaced

antenna and Doppler methods, since the latter technique does not provide information about the flow

rotation.
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i. INTRODUCTION

Numerical weather prediction (NWP) is concerned with weather prediction

through numerical integration of the hydrodynamic and thermodynamic equations that

govern atmospheric motions. One concern in NWP is the specification of the initial

conditions. The NWP models currently in use rely primarily on rawinsonde data taken

on a large scale network twice daily to provide the initial conditions for the

forecasts. Additional data such as that provided by a network of wind Profilers

adds detail to the initial conditions and can improve the quality of the forecasts.

The details provided by the wind measurements may be retained better by the models

if a temperature field is also specified.

Our research concerns deriving temperature fields from measurements of wind

profiles and their changes with time. The method involves taking equations much

like what are used in the numerical models, the horizontal equations of motion, and

forming a Poisson equation to be solved at each horizontal level desired to get a

a temperature field. We are also investigating the improvement to the temperature

fields which can be obtained by adding measurements from ground-based and satellite

based microwave radiometers. The retrieval method derives a weighted combination

of wind-derived temperatures and microwave radiances through use of the radiative

transfer equation.

2. THEORY

The theoretical basis for this retrieval method is presented in more detail

in GAL-CHEN (1988) . What follows is a brief overview of the basic ideas behind the

method.

In this method, an estimate of the three-dimensional field of temperature is

sought using two sources of data: (I) vertical profiles of wind and their changes

with time as measured by a wind Profiler network, and (2) microwave radiance

measurements from satellites and/or a network of ground-based radiometers. To

accomplish the retrieval we need to provide additional information on the relation-

ship between the measured quantities and the desired field, temperature.

First, consider the relationship between radiance and the vertical profile

of temperature. Radiometers can be thought of as measuring a weighted average of

the temperature profile in the vertical. The measurement made by a radiometer is

determined by the radiative transfer equation, which may be written in a simplified

form for a ground based radiometer as

0

I(V) = J K(V,p) T(p) dp + TBACK e -_(v) (I)

Ps

where I(V) is the radiance measured by the radiometer in the frequency channel v.

K(V, p) is a weighting function determined by the rate of change with height (or

pressure) of transmission of radiation at frequency v. T_c_(V) e "_qv_ is the

background radiation from space reaching the Earth's surface. The form for a

satellite radiometer is similar to (i) but includes a term expressing radiation from

the Earth's surface.

Inversion of the measurement of I(V) to get T(p) is an ill-posed problem;

it is possible to find many different temperature profiles which generate the same

distribution of brightness temperatures at specified frequencies. Thus, it is



18

necessary to add additional information to perform the temperature retrieval.

Inversion methods for radiance measurements include "physical" retrieval where a

first guess profile is modified to produce the measured radiances; and "statisti-

cal" retrieval, using the covariances between measurements in different frequency

channels and temperatures measured at given pressure levels to derive fitted

coefficients relating measured radiances and temperature profiles. More detailed

discussions of temperature retrieval from radiometer measurements may be found in

many places (e.g. WESTWATER AND STRAND, 1972, RODGERS, 1976, and others).

The second relationship to consider is that of the measurements of wind (and

its change with time) and the temperature field. This relationship is described

by the horizontal equations of motion and the hydrostatic equation. The horizontal

equations of motion in (x,y,p) coordinates are

Du / Dt = - _ / _x + F l + fv (2)

Dv / Dt = - _ / _y + F 2 - fu (3)

where u and v are the horizontal components of wind in the x- and y- directions,

respectively, f (= 2_sin _) is the Coriolis parameter, and FI, F 2 represent the x-

and y- components of the turbulent forces. With knowledge of the three-dimensional

wind field and its change with time (and, additionally, some form of frictional par-

ameterization) we can calculate all the terms in the equations except the horizontal

gradients of geopotential, _. Solving for these terms, we can rearrange (2) and (3)

and write:

/ 8y = G (5)

GAL-CHEN (1978) and HANE AND SCOTT (1978) have proposed a least square

solution of (4) and (5), by solving the variational problem:

] ] (_ / _x - F )2 + (_# / _y - G )' - Min. (6)

The solution of this variational problem is a Poisson equation for #:

V2, # = _F / ax + @G / _y (7)

Here ?2 is the horizontal Laplacian. When (7) is expanded the form of this

divergence equation is

_ V2 _D _D _D D 2 _ + _ _u + _ _v
H ¢ = _- + u_ + V_-y + + _p _x _p _y 8p

8F 1 8F2)
- 2 j(u,v) - f _- I,_+ _y ¢81

(where D is the divergence of the horizontal wind, D = _u/_x + 8v/By)

The boundary conditions for the above problem may be either Dirichlet

conditions (specifying # on the boundary) or Neu/nann conditions (specifying the

derivative of # normal to the boundary). With Neumann boundary conditions that the

solution for # is found only to within a constant, so additional information, such

as the mean value of height at a level or a height value at a grid point must be

supplied. The horizontal gradients of # are uniquely determined, however.

Once _ is determined on more than on level one may obtain mean layer virtual

temperature T v by the hydrostatic relation:

_¢I 8¢1n p) = - R T V (9)

Use of the full divergence equation (8) to retrieve geopotential may not be

practical as accurate evaluation of the terms involving _ could be difficult to

accomplish. GAL-CHEN(1988) presents a scale analysis of the momentum equations

applied in a frontal zone where the flow possesses two length scales, deriving a

form of the divergence equation where the contributions of _ are dropped. To get
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this formof the divergence equation from the variational problem (7) one drops the

terms involving _ from the calculation of F and G.

Given the measurements of wind profiles and radiances, and the relationships

of these to the three dimensional temperature field we can then define some optimal

combination of the two kinds of data to obtain the temperature field. The

formulation which incorporates the observed radiances into the retrieval procedure

is discussed in GAL-CHEN(1988), a brief recapitulation is presented below. TO

achieve consistency with the previous sections this discussion deals only with the

microwave region.

The basic idea is to modify V,T _, which is the estimate of the horizontal

(virtual) temperature gradient obtained from the horizontal divergence equation,

to another (hopefully better) form V,T such that the radiative transfer equation

(i) is better satisfied. It is also desired that V,T remains as close as possible

to the unmodified form V,T _. This defines the following variational problem:

Find a function T such that

0

JJ IT- dpdS+
S Ps 0

- dS = Min. (i0)

Ps

where S is a symbol for a horizontal area. (Here I v incorporates the transmission

term in (I) and is adjusted to represent a weighted virtual temperature.) The reason

for dealing with gradients of radiance instead of dealing with the quantity itself

is that due to calibration errors and other unknown biases an absolute measurement

of radiance is less accurate than a relative one (MENZEL et al., 1981). The solution

of the variational problem shows that the T field must satisfy

VH" _oVH T + Z _v K<V,p) VH2_ K(V,p') T(p') dp'
v

P

VH._0 V H T f + _ _ K(v,p) VH 2 I(v) (Ii)

The parameters _0, _; V = 1,2,...,N (N -- the number of channels) are "properly"

selected weights, chosen based on our relative confidence in the various sources

of informition. For instance, _0 and the _v's can be chosen to be inversely

proportional to the squares of the standard deviations of the errors associated with

each term of the l.h.s, of (i0) above. We take _o " _0 (x'y'p) to take into account

the fact that in the boundary layer dynamical retrievals using the divergence

equation are suspect and should therefore be assigned a low weight (MODICA AND

WARNER, 1987).

After some manipulations GAL-CHEN (1988) shows that the minimization problem

(i0), (ii) can be reduced to that of solving at each horizontal level a Poisson

equation with Neumann or Dirichlet type boundary conditions.

3. EXPERIMENTAL RESULTS

To verify our retrieval algorithm we are using the Observing System

Experiment methodology discussed e.g. by RAMAMURTHY AND CARR (1987). Wind and

temperature soundings from extensive field experiments are available, and can be

used along with an assumed form of the radiative transfer equation to simulate

observations from a network of Profilers. This approach is in contrast to the

Observing System Simulation Experiment (OSSE) approach, where the "observations"

used are produced by a numerical model, and the dynamics are constrained to follow

the equations used in the numerical model. In the OSE approach, no particular

constraints are applied to the wind measurements.

The data we are using are from the AVE/VAS Ground Truth Field Experiment

(HILL AND TURNER, 1983). Radiosonde data were taken at 24 National Weather Service
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stations at 3-hourly intervals on 4 separate days in the spring of 1982. These data

represent a variety of weather conditions, unlike some other experiments conducted

to measure specific kinds of weather. The 3-hourly observation interval gives

better resolution of changes in atmospheric conditions with time than the normal

12-hourly synoptic observations. Results presented here were derived using data

from AVE/VAS II (6-7 March 1982).

Measurements from microwave radiometers were simulated by integrating the

measured temperature profiles in the vertical with weighting functions similar to

those illustrated in WESTWATER et al. (1985). Brightness temperatures (propor-

tional to radiance, but with units of temperature) from four ground-based microwave

channels and two satellite microwave channels were generated. The wind data used

to represent Profiler winds were from the sounding data interpolated to 25-mb

levels, as were the temperature and height data used for the verification fields.

To produce the wind-derived height and temperature fields, the u- and v-

components of the wind (slightly smoothed in the vertical) at constant pressure

levels between 825 mb and i00 mb were interpolated to a i" latitude-longitude grid

using the BARNES (1973) successive correction interpolation scheme. These data

were used to calculate the F and G terms (eqns (2)-(5), but omitting terms involving

vertical advection) by second-order centered finite differences. The gradients of

the F and G terms were used to calculate the forcing function of the Poisson equation

for #. This Poisson equation with Neumann boundary conditions was solved by

successive over-relaxation. The difference of _ between pressure levels was

calculated and divided by R to yield mean layer virtual temperature over a 50-mb

layer, which is used in the combined retrieval as the first guess temperature T _.

Fig. 1 shows the RMS differences between retrieved height fields and those

analyzed from tie radiosonde data. The different curves show the effect of using

different approximations to the divergence equation. The geostrophic approximation

(in which only the Coriolis force was retained) showed the worst results above 500

mb. The balance equation approximation which neglects tendencies and the approxi-

mation which included the time derivative term performed generally the same.

The results of one test calculation of a simplified form of equation (ii)

are presented. The simplifications include (a) calculation of I v from gridded

virtual temperatures (without added random error), (b) input of "true" temperatures

analyzed from the radiosonde data for levels below 800 mb and adjustment of

temperature only from 800-125 mb instead of starting the integration at the Earth's

surface (to avoid problems related to terrain variation across the network), and

(c) use of a simple form of the parameters 60, _v; V = 1,2,...,N which did not include

any variation in the vertical. The weights used were: _0 = 0.2, _v(52.85) = 0.2,

_(53.85) = 0.125, _(55.45) - 0.05, _(58.80) = 0.025, _v(53.74) = 0.2, and

_v(54.96) = 0.2.

Fig. 2 shows the RMS differences between retrieved and analyzed virtual

temperatures for the retrieval from wind information and for the combined re-

trieval. The curve marked with crosses shows the error associated with calculating

temperature from 50-mb layer thicknesses compared to virtual temperature measured

at a given pressure level, and so represents a kind of minimum interpolation error.

The combined retrieval gave improved error statistics at nearly all levels although

these were very small above 700 mb (where the ground based measurements had little

effect). The dashed extension of the wind retrieval curve below 800 mb shows results

from wind retrievals in terrain following (x,y,_) coordinates. These clearly show

the poorness of the retrieval in the boundary layer near the Earth when only wind

information is used. Obviously the wind observations will need to be supplemented

with other observations (such as may become available with the RASS system). We are

currently working on the combined retrieval method in (x,y,o) coordinates,and

expect to see similar improvements to the retrieved temperatures in the lower layers

near the Earth.

Fig. 3 shows a comparison between the observed 700 mb temperatures and those

retrieved from the wind data and using the combined retrieval. The analysis from

the combined retrieval is slightly closer to the observed temperatures. The change
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is consistent with the 0.2 K improvement in RMS error at 700 mb shown in Fig. 2.

The amount of improvement of the temperature analysis depends on the difference of

the measured radiance from the radiances that would be produced by the first guess

temperature field retrieved from winds alone. In this case, the "true" and "first

guess" radiances were very close so only limited improvement was possible.

5. SUMMARY

Using wind information, the horizontal equations of motion, and the hydro-

static relation, it is possible to retrieve temperature fields that have RMS errors

2 K in the mid- to upper troposphere but with greater error near the Earth's

surface. A retrieval method has been developed which combines the temperature

retrieved from wind data with radiances measured from ground and satellite based

microwave radiometers. This method has been shown to reduce the analysis error by

more than 0.5 K in the lower troposphere for the test case examined. The retrieval

method may also be adapted to use different (e.g. terrain following) coordinate

systems and to include other sources of data if desired.
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ABSTRACT

On June 10-11, 1985, a squall line passed the McPherson, Kansas, VHF wind profiler during the O-K

PRE-STORM experiment. The mature squall line had an intense convective leading edge and a broad

trailing stratiform precipitation region. The Doppler power spectra for the period exhibited double

peaks corresponding to both turbulent scattering and precipitation scattering during the periods of

heavy rain. A nonlinear least-squares fitting of the spectra was applied in order to estimate the mean

radial velocity separately for the two types of scatterers. From the clear air velocities obtained in this

way, we have identified the various features of the vertical and horizontal flow associated with the

squall line passage. We have also compared the flow observations made by a pair of scanning 5-cm

Doppler radars with the VHF data. The data set shows some of the problems that will be faced in

using and analyzing profiler data obtained during precipitation events.

INTRODUCTION

During the past decade the use of the Doppler wind profiling technique has steadily gained acceptance

in the meteorological community to the point that procedures have been developed for operational

analysis of the data (see, e. g., R6TTGER AND LARSEN, 1989, for a review). Often only the first

moment of the spectrum, after DC subtraction, is used as an estimate of the line-of-sight velocity, and

vertical profiles of the horizontal wind velocity are obtained by means of a consensus averaging

technique. For each range gate, velocity estimates are produced every five or six minutes, and the

hourly average radial velocity is estimated from the largest group of values which lie within a

prescribed tolerance of one another for the averaging period. STRAUCH et al. (1987) carried out fairly

extensive tests of the procedures by using the redundancy in data from a five-beam 405-Mitz profiler to

make independent hourly estimates of the horizontal wind components for a month in clear air. They

calculated the standard error expected for a three-beam profiler in such an environment to be 1.3 m s -1

if the vertical air motion is taken into account. A number of studies have been carried out in which
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clear air wind profiles obtained with Doppler radars have been compared to those obtained by nearby

radiosondes, and although such comparisons are by no means exhaustive they genera]ly claim

reasonable agreement between the two methods (see R_TTGER AND LARSEN, 1989, for summaries

of a number of the studies).

The presence of precipitation gives rise to several problems in using Doppler radar to measure the wind

field. At UHF, the received signal is generally dominated by scatter from precipitation (LARSEN

AND R6TTGER, 1987). As a result the measured radial velocity will be the projection of the

preciptation fall speed on the line of sight. At VHF, the contributions from turbulent scattering will

dominate for light rainfall rates, but the precipitation scattering will be of comparable magnitude and

must be identified and separated in order to obtain profiles of clear air motion when the rainfall rates

are heavier. Processing algorithms which perform reasonably well when applied to data acquired during

clear conditions are of questionable value in analyzing data obtained in a precipitating environment,

particulary when systems evolve rapidly. Consensus averaging techniques intended to improve the

hourly estimates of the winds may form erroneous averages when the winds change significantly from

profile to profile. If precipitation or clear air motion evolves or fluctuates during the averaging period,

as in a convective storm, it may be impossible to form a consensus for that period (AUGUSTINE AND

ZIPSER, 1987), or a consensus average may not be representative of the period as a whole. A second

problem is that a first moment estimate of the line-of-sight velocity will be misleading when double

peaked spectra are measured since the velocity estimate will fall between the turbulent scattering and

precipitation scattering peaks. These problems need to be assessed if Doppler radar wind profilers are

to provide useful information during precipitation events. Since the most interesting mesoscale

dynamics occur in connection with precipitating systems, the problems are at the beart of the use of

wind profilers as part of an operational mesoscale observing system.

Relatively few studies have dealt with the use of Doppler radar to observe precipitation. FUKAO et al.

(1985) observed light stratiform rain with the Japanese VHF MU radar and deduced the wind field by

identifying the turbulence contribution of the received signal. Their comparison of the horizontal

motion of clear air to that of precipitation showed excellent agreement. LARSEN AND R_)TTGER

(1987) examined the doubled-peaked spectra associated with a thunderstorm observed with the SOUSY

VttF radar located in West Germany. They suggested the possibility of using a combination of VIIF

and UHF radars for cloud physics research. For example, knowledge of vertical air motion obtained

from the VHF system would allow the calculation of corrected terminal velocities of precipitation and

parameterization of drop-size distributions observed with the UHF radar. Indeed, WAKASUGi et al.

(1986, 1987) calculated such distributions from VtIF signals alone by application of a nonlinear /east-

squares fitting of spectra obtained in stratiform rain with the MU radar. FORBES AND CARROLL
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(1987) made some limited determinations of air and precipitation vertical velocities from UHF spectra

obtained during a thunderstorm. WUERTZ et al. (1988) repeated the experiment of Strauch et a].

during the summer of 1986 in Colorado, using periods when precipitation was present in the radar

beam. They found the measurement error in hourly profiles of the horizontal wind to be 2-4 m s -1

during periods of precipitation. They were able to use consensus averaging without modification if the

precipitation was spatially and temporally homogeneous, but found that for time-varying precipitation

the off-zenith radial velocities had to be corrected for precipitation fall speed before consensus

averaging. A few pioneering works (SMULL AND HOUZE, 1985, 1987a, b; SRIVASTAVA eta[., 1986;

KESSINGER et a[., 1987) have utilized a variety of Doppler radar systems to study the kinematic

features associated with squall lines.

In this paper we present observations made with a VIIF Doppler wind profiler of the wind field

associated with the passage of a mid-latitude squall line. An alternative method of estimating the

wind vector has been used and is described herein. The observed flow is compared to that measured by

a pair of 5-cm scanning Doppler radars operated in the vicinity of the wind profiler.

TIIE I0-II JUNE 1985 SQUALL LINE AND THE McPHERSON PROFILER

The OK-PRESTORM experiment was conducted in May and June, 1985 and has been described in

detail by CUNNING (1986). As part of the measurement campaign, a VHF Doppler wind profiler was

installedand operated at McPherson, Kansas, by NCAR. The McPheraon profilerwas operated at a

frequency of 49.25 Mhz in a three beam configuration. A pulse width of 1 ps gave a height resolution

of 150 m starting at 2.1 km AGL. The operating parameters of the McPherson radar are summarized

in Table 1. A complete sampling over all three beam orientations required just over 40 s. The time

series of the received quadrature signals was recorded on magnetic tape, allowing for the subsequent

calculation the Doppler power spectra.

Two NCAR 5-cm Doppler radars,CP-3 and CP-4, were also deployed as part of the OK-PRESTORM

program at the locations shown in Fig. I. During most of the 10-11 June event these systems were

operated in a three-dimensional conical scanning mode, in which the lineof sight Doppler velocity was

measured as a function of range and azimuthal angle for a number of elevation angles. This procedure

allowed extended VAD (EVAD) analysis (SRIVASTAVA eta]., 1985; RUTLEDGE et al.,1988) of the

data to be made in the stratiform region. The EVAD technique calls for the horizonta[ wind

components to be calculated for a seriesof heights around the perimeter of a cylinder centered about

the radar. From this the verticalprofileof the horizontal wind at the center of the cylinder and the
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Table 1. Operating Parameters for the VHF Wind Profiler at McPherson, KS

Frequency 49.25 Mhz

Number of beams 3

Orientation of oblique beams 8 degrees off zenith

Peak power 125 kW

Average power 5 kW

Antenna aperture 49 m by 49 m

Height resolution 150 m

Number of gates sampled 133

102"

KS

i i
50 km

OK

TX

AMA

I t
102" 101" 100" 99 ° 98* 96* 95*

Longitude

Figure i. Map showing the locations of the NCAR CP-3 and CP-4 (+) radars and the

McPherson VHF profiler(o) during the O-K PRE-STORM campaign. The large circlesindicate

areal coverage of CP-3 and CP-4. (from RUTLEDGE et al.,1988).
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divergence within the circular boundary are obtained. Integration of the divergence yields the profile of

vertical air motion. The McPherson site lay well within the scanning range of both the NCAR radars.

For one hour shortly after the passage of the convective line, CP-4 was operated at vertical incidence.

By approximately 2000 GMT on 10 June a squall line had developed over southwest Kansas. The

system intensified as it propagated eastward and southeastward. Composite digitized reflectivity data

from three National Weather Service weather radars located at Wichita, Kansas; Oklahoma City,

Oklahoma; and Amarillo, Texas, is shown in Fig. 2 for 0151 GMT on 11 June, with darker regions

denoting higher reflectivities. The leading convective edge of the squall line is evident as a narrow

band of high reflectivity stretching over 700 km and oriented roughly from northeast to southwest. A

broad region of trailing stratiform precipitation is evident behind the line of high reflectivity. The

squall line had reached or surpassed maturity at this time, and the leading edge had passed the

McPherson profiler and the CP-3 and CP-4 radars. The operation of the McPherson profiler was

suspended from 0130 GMT until 0230 GMT on June 11 during the most intense portion of the storm.

ANALYSIS OF THE DATA

The complex time series data recorded before and after the squall line passage were converted to

Doppler power spectra by means of a complex fast Fourier transform (FFT). Spectra from the zenith-

pointing beam were incoherently averaged over 10 minutes and the noise level determined by use of the

method originally suggested by HILDEBRAND AND SEKHON (1974). The reflectivity at vertical

incidence is shown in Fig. 3a and 3b. The signal strengths in clear air conditions always decrease by

_2 dB/km with height. Therefore, the reflectivity contours generally show enhancements below 6 km

for the particular contouring levels chosen in this case. Enhanced reflectivities stretch higher to 12 or

13 km before 2100 GMT on June 10 indicating the presence of a local thunderstorm near McPherson.

The enhancements above 6 km after 0100 GMT show the convective edge of the squall llne. There is

also a barely perceptible band of higher reflectivities near 14 km, corresponding to the height of the

tropopause.

In Fig. 3b, the specular echoes from the tropopause are more clearly evident at heights between 14.5

and 14.0 kin, with the altitude descending as time progresses. The reflectivities below 12 krn tapered

off gradually as the squall line passed the radar until more typical clear air values were reached around

0500 GMT. Strong increas_ in the noise level are evident near 0300, 0410, and 0500 GMT. These

echoes are most likely associated with lightning echoes. The lightning data presented by RUTLEDGE

AND McGORMAN (1988) show lightning to be present near the radar at these times.
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Figure 2. Composite reflectivity measured with NWS weather radars at Wichita, KS,

Oklahoma City, OK, and Amarillo, TX. Data from 0151 GMT I1 June. Darker shading indicates

higher reflectivity. (by SIKDAR and ZIPSER, private communication, 1987)
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In clear air conditions, spectra averaged over as much as 5 rain can be meaningful when tile flow

conditions are changing slowly. During the squall line passage, the best possible time resolution was

needed in order to describe the flows associated with the squall line and to account for the contribution

of precipitation in some of the lower altitude spectra during periods of heavy rain. Therefore, no initial

incoherent averaging of the spectra was applied, giving a time resolution of 40 s. A nonlinear least-

squares fitting was used to estimate the mean radial velocity of the turbulent and precipitation

scatterers within each sampling volume. Some of the spectra contained a single peak due to turbulent

scattering while others contained a secondary peak caused by scattering from precipitaion particles.

Each spectrum was normalized to its peak and a single Gaussian was fitted to the data. If the residual

exceeded a critical value, a second Gaussian was incorporated in the fit to the spectrum. The double-

Gaussian was retained only if it yielded a smaller residual. However, if neither attempt provided a

suitably close approximation of the signal, the data point was flagged so that a velocity value for the

gate and time could be interpolated from neighboring values. For the double-peaked spectra, the peak

corresponding to the greater velocity toward the radar was assumed to be the precipitation signal and

the remaining peak was taken to be the air velocity component. The contribution of the vertical air

motion to the radial velocities measured along the off-zenith beams was subtracted in order to provide

the most accurate estimate of the horizontal wind.

RESULTS

The horizontal flow relative to the squall line measured at McPherson during the early hours of 11

June is shown in the upper panel of Fig. 4. Note that time increases to the left in the figure so that the

time/height cross-section can be viewed as a spatial cross-section of the storm at a single time. A

downward-sloping rear inflow jet is evident at midlevel altitudes between 3 and 5-6 km, as well as a

strong front to rear flow aloft. The features are in general agreement with the cross-section observed

with the scanning CP-4 radar at 0414 GMT except that the boundary between the low-level rear inflow

and upper level outflow shows a greater slope in the CP-4 data and reaches a higher altitude. The

velocity magnitudes are similar in both sets of observations. Although the agreement is encouraging,

discrepancies are to be expected since the McPherson profiler provided height measurements at a single

location over a period of 3-4 hr while the CP-4 data was obtained from a single scan near the midpoint

in the profiler observations.

In Fig. 5, a comparison of a single 7 minute averaged profile of the relative horizontal flow at

McPherson at 0410 GMT, plotted as a solid line, and the relative flow measured with CP-4 at 0345

GMT and CP-3 at 0334 GMT, denoted respectively by + and 0, is shown. The time of the profiler

data was selected to account for the lag due to the spatial seperation of the radars. There is good
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Figure 4. System-relative horizontal flow (VREL) in m s -z. Positive values indicate

flow from left to right• Data acquired with the VHF profiler is displayed in upper panel; RIII

data from CP-4 (from RUTLEDGE et al., 1988) in lower panel.
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Figure ,5. Single profiles of relative horizontal flow (Vrel) in m s -t with CP-4 (+),
CP-3 (0), and VHF profiler (-). Sign convention as in fig. 4. CP-3 and CP-4 data by RUTLEDGE

et al. (1988) using EVAD analysis.
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and VHF profiler (-). Sign convention as in fig. 6. CP-3 and CP-4 data by RUTLEDGE et al.

(1988) using EVAD analysis.
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agreement between the three curves but particularly between the profiler and the CP-4 data. The

profiler, however, shows larger negative velocities between 10 and 12 km than either of the other two

radars.

The vertical air motion measured in the stratiform precipitation region by the profiler is shown in the

upper panel in Fig. 6, and the corresponding measurements obtained by the CP-4 radar operated at

vertical incidence are shown in the lower panel. The CP-4 values represent an attempt to estimate

vertical air velocity w by deriving particle fallspeed Vp from the observed reflectivity and adding to it

the measured Doppler velocity W. Only data above the melting layer are included for CP-4. A strong

updraft is evident during the first 10 rain after 0233 GMT in the CP-4 data, but there is only a slight

indication of a similar feature in the profiler vertical velocity data. However, the vertical velocities are

predominantly positive above 10 km in both data sets. The magnitudes are comparable in both

measurements after 0243 GMT but stronger in the CP-4 data between 0233 and 0243 GMT. The

strong updrafts may have been highly localized in this case so that they were only evident above the

CP-4 radar.

Fig. 7 shows a comparison of vertical velocity profiles measured with the profiler at McPherson at 0410

GMT, and CP-3 and CP-4 at 0334 and 0345 GMT, respectively. There is good agreement between

the measurements below 10 kin. All three profiles indicate downdrafts below 5-6 km and updrafts at

the higher altitudes. Above 10 km, the profiler shows an abrupt increase in the magnitude of the

updrafts which is not corroborated by the other two measurements.

The discrepancy at the upper heights is apparently due to a loss of signal-to-noise ratio in the profiler

measurements. In a small height range near 14.5 kin, the reflectivities increase due to the aspect

sensitive echoes associated with the tropopause. Near the tropopause, smaller vertical velocities were

produced with values in better agreement with the meteorological radar measurements. Averaging over

longer time intervals will improve the detectability of the signal in the upper range gates, but

increasing the averaging will only be sensible if the velocity values remain nearly constant over a longer

period. The latter condition is generally fulfilled in clear air conditions but not during active periods

such as the squall-line passage. The height coverage afforded by a particular radar is dependent on the

transmitter power and antenna area. The particular combination used in the McPherson system

produced good signal-to-noise ratios for 40-s spectra up to ~ 10 km altitude.

CONCLUSIONS

The vertical velocity measurement capability of the radar wind profiler technique shows a great deal of

potential for studies of mesoscale dynamics. However, verification of the radar measurements has been

a problem since there is no other technique with comparable accuracy for direct vertical velocity
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measurements. Several studies have compared the profiler measurements to vertical velocities

calculated from standard radiosonde data. Such comparisons have increased our confidence in the

measurements, but discrepancies can generally be explained away by considering the differences in the

sampling schemes associated with the two data sets. The EVAD method used with conventional

meteorological radars only works during precipitation events such as the squall line passage studied

here. Nonetheless, there is an opportunity for comparison with the VHF profiler data when the

turbulent and precipitation scatter components in the spectra are carefully separated as we have done.

The profiles measured with the two types of instrumentation are in good agreement over a broad

height range, although the profiler measurements led to apparently erroneous values at heights in the

upper troposphere. The agreement between the two measurement techniques indicates the great

potential of the profilers for studies of active mesoscale systems, such as squall lines.
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I. INTRODUCTION

Specular echoes are observed routinely by clear-air Doppler radars operat-

ing at lower VHF. They are detected from heights where the static stability is

strong and are detected only when the antenna is pointed near the vertical

direction (e.g., GAGE AND GREEN, 1978; ROTTGER AND LIU, 1978; GAGE et al.,

1981; LARSEN AND ROTTGER, 1982; TSUDA et al, 1986; HOCKING et al, 1986).

Considerable progress has been made during the past decade both in modeling

these echoes (e.g., GAGE, et al, 1981; HOCKING AND ROTTGER, 1983, DOVIAK AND

ZRNIC, 1984; GAGE et al, 1985), and in developing an objective tropopause-

detection method using the relation between atmospheric stability and the

strength of the specular echoes (GAGE AND GREEN, 1982; GAGE et al., 1986;

SWEEZY AND WESTWATER, 1986). Until recently, however, most clear-air VHF

Doppler radars were located in or near mountainous terrain, so that all of the

above studies were made in regions where orographic effects are important.

Therefore, in May, 1988 an experimental campaign was conducted at the Flatland

VHF clear-air Doppler radar site, which is located in very flat terrain far

removed from mountainous regions, to study specular echoes in this region of

simple topography.

2. DESCRIPTION OF EXPERIMENT

The Flatland radar (GREEN et al., 1988) is located about 8 km west of the

Champaign-Urbana, Illinois, airport [40.05 ° N, 88.38 ° W, 212 m above mean sea

level (MSL)]. This clear-air Doppler radar operates at a frequency of 49.8 MHz

(6.02 m wavelength). During this experiment the antenna was pointed in the

vertical direction, the peak and average transmitted power were about i0 kw and

150 watts, respectively, and the pulse length and matching range resolution

were 750 m. The antenna has an area of about 2500 m squared, and the ef-

ficiency factor, =, for the radar system was 0.5. Useful data was obtained in

two height regions: from 5 km to about 7 or 8 km, and from the tropopause to

about 15 km.

In this study we compare the strength of the vertically-looking radar

echoes with the modified Fresnel scatter model given by GAGE et el. (1985).

From this model, the normalized signal power Sv (watts) is given by

=2 PT A2 (i--_)
- i017 e Ar [M FI(_)] = (i)

Sv 16 _2 l0 s

where M is the mean gradient of generalized potenti@_^radio refractive index

(OTTERSTEN, 1969), and FI(A) is taken to be 0.08 m . M was calculated from

the CLASS balloon-soundings data. CLASS is a high-resolution research-quality

upper-air balloon-sounding system developed by NCAR (LAURITSEN et el., 1986).

The data used in this study were ten-second smoothed data. The usual ascent

rate was about 3 m/s or slower, which gave a height resolution of about 30 m/s

or better. The balloon launch site was located about 40 m east of the Flatland

radar antenna.
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3. PRELIMINARYRESULTS

Comparison of radar Sv Droflles with model estimates

An example of the radar S height profiles and corresponding balloon

temperature and model estlmateVprofiles are shown in the figure. Height

profiles of radar S are shown in panel (A). The log S scale is relative, and

the magnitude of th_ radar data is determined by comparing it with a model

profile (described below). In this preliminary study, standard methods were

used to scale the Doppler spectra. Panel (A) summarizes the radar measurements

for an hour. The median profile of all the profiles taken during an hour is

given by the solid llne. The extreme values for the hour are given by the

short dashed llne, and the upper and lower quartiles are the dashed-dotted

lines.
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Figure. Height profiles of Flatland radar measurements, temperature,

and model estimates for 15-16 hours UT on i0 May 1988.

(A) Profile of radar S (-SV on the Figure). The solid llne is the
V

median of the measurements for the hour, the dotted lines are the

extreme values, and the dash-dot lines are the upper and lower

quartiles, respectively.

(B) Temperature profile from CLASS sounding. The balloon was

launched at I011 UT on i0 May 1988.

(C) Smoothed model estimate and test -2°/km profiles. Both profiles

are derived from the CLASS balloon sounding data.

(D) Model estimate and test 0°/km profiles. Both profiles are

derived from the CLASS balloon sounding data.

Panel (D) shows the model profile calculated from equation (I) using the

CLASS upper air data to compute M using all the hlgh-resolutlon data. Note the

very large fluctuations in S . To compare the model S profile with the radar
V

S profile, the high-resolutlon model was smoothed wlt_ a Gausslan filter,

w_ich roughly approximates the radar range gate height function. Panel (C)

shows this smoothed model profile. In this example the shape of the smoothed

model and radar profile agree well.
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Tropopau_e height determination

Panel (B) shows the temperature profile. In this example the temperature

tropopause is poorly defined. We find that an objective two-step procedure

using both the smoothed and hlgh-resolution model profile leads to a more

accurate model tropopause height determination than simply using either profile

alone. This procedure is easily demonstrated by using panels (C) and (D) of

the Figure. The first step [shown in panel (C)] is to find the intersection of

the smooth profile with a -2°/km temperature gradient test profile. This is

similar to the usual procedure except that the model profile is smoothed. The

tropopause test begins at the 500 mb level (about 5.6 km) and proceeds upwards.

We look for an intersection between the two curves such that the model is less

than the test curve below the intersection and greater than the test curve

above the intersection. Furthermore, the model must remain larger than the

test curve for two km above the intersection. This first step gives a lower

estimate to the model tropopause height.

The second step of this model tropopause-detection procedure is to find

the intersection of the hlgh-resolutlon model profile with a O°/km temperature

gradient test curve as shown in panel (D). This step begins at the height of

the tropopause estimated in step one and proceeds upwards until an intersection

between the two curves is found with the same sense as in step one. The height

of this intersection is the model tropopause height. The 0°/km test curve

gives accurate results for this data set, but a different test temperature

gradient value may be better at other locations or seasons. Because the first

test is applied to the smoothed profile, this two-step procedure is very

robust. In this example, the temperature, model, and radar tropopause heights

are 10.82, 10.81, and 11.09 km, respectively.

4. CONCLUSIONS

The shape of height profiles of specular echo strength measured in the

tropopause and lower stratosphere by the Flatland radar agree well with the

modified Fresnel scatter model (GAGE et al., 1985) computed from upper-air

balloon data. The radar tropopause height can be determined accurately even

with a radar system operating with low transmitted power.
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CLEAR AIR RADAR OBSERVATIONS OF THE GREAT OCTOBER STORM OF 1987

M. CROCHET (1) E. BAZILE (I) F. CUQ (I)(2) F.M. RALPH (2)

S.V. VENKATESWARAN (2)

(i) L.S.E.E.T., Universit_ de Toulon, UA 705 CNRS, 639 Bd des Armaris,
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(2) Department of Atmospheric Sciences UCLA, LOS ANGELES, CAL, USA

Radar Provence was measuring the three dimensional wind velocities and

the reflectivity above its location at Lannion, Brittany (48 ° 45'N, 3 ° 26'W)

beginning from several days prior to the great october storm of 1987. The

wind measurements were obtained for most of the troposphere and lower stra-

tosphere with a time resolution of 4 minutes and a height resolution of

600 meters. Time-height cross-sections of suitably averaged horizontal and

vertical wind velocities are presented in this paper for a 48 hour period

terminated by the power supply failure at 22 UT october 15 colnciding with

the most intense phase of the storm. In addition, thermal advection patterns

derived from the vertical shears of the horizontal wind and evolution of

tropopause altitude derived from the enhancement of reflectivity due to large

stability (BAZILE,1988) are also shown. It is found that the velocity

patterns and the thermal advection pattern give a mutually consistent picture

of the evolution of the storm and of the frontal surfaces, as viewed from the

radar station (CROCHET et a1.,1989).
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i. INTRODUCTION

The past decade has seen a rapid increase in the use of wind-profiling

Doppler radars in atmospheric research (GAGE, 1989). With a few notable excep-

tions most atmospheric research using wind profilers has been carried out with

individual radars. With the current wide-spread acceptance of clear-alr radar

wind-profiling technology, field programs are increasingly taking advantage of

the continuous wind observations available from wind profilers. At the same

time several companies have become active in developing and marketing wind

profilers. With the deployment of the 30 station network of wind profilers in

the central United States, it appears evident that we are on the threshold of a

new era in which wind profilers will become an integral part of the next gener-

ation weather observing system.

While much of the wind profiler research community has been focused on

mid-latitude atmospheric research, the Aeronomy Laboratory's Tropical Dynamics

and Climate Program has focused its attention on the use of wind profilers in

the tropics to study the scale interactions that take place between tropical

convection and large-scale atmospheric circulation systems. Because the wind

profilers observe vertical as well as horizontal motions, the relationship

between atmospheric vertical motions and convective systems in the tropics can

now be examined directly. In addition, the wind observations from the new wind

profilers augment the existing base of conventional observations available in

the tropics. For example, wind observations from Christmas Island are

routinely transmitted via GOES satellite and input into the Global

Telecommunications System (GTS) for world-wide dissemination. These observa-

tions are already being used routinely by the National Meteorological Center

(NMC) and the European Centre for Medium Range Weather Forecasts (ECMWF) in

their analysis and forecast products (GAGE et al., 1988).

This paper is broadly concerned with the application of wind profiling

technology to tropical atmospheric research. Specifically, we will present

some preliminary results of wind profiler studies of tropical convection and

discuss the construction of a trans-Pacific wind profiler network as it relates

to studies of equatorial waves and large-scale atmospheric circulation systems

associated with E1 Nino-Southern Oscillation (ENSO) phenomena.
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2. CONVENTIONALWINDOBSERVATIONSIN THETROPICS

Thetropics arepoorlyobservedcomparedto thepopulatedlandmassesin
the temperatelatitudes. Overthevast oceansthe only windobservationsthat
areavailableabovethe surfacecomefromtwomajorsources. Wherecloudsare
present,clouddrift windsaredeterminedroutinely fromsatellite imagery.
Typically, thesewindsare limited to twoheight ranges: the 850-900 mb region

and the 200-300 mb region. The accuracy of this method was found by HUBERT AND

THOMASELL (1979) to be no better than ±5 ms -I . At the 250 mb level additional

wind information is available from commercial aircraft. While their precision

is excellent (±I ms-*), their height distribution and geographical coverage is

very limited.

Routine wind soundings are available only from a sparse network of rawin-

sonde stations. Figure i shows the locations of rawinsonde stations in the

tropical Pacific. The map shows the locations of stations that are included in

the NCAR archive of upper-air data (R. JENNE, private communication). The

solid triangles refer to stations with a record of data longer than twenty

years. Stations marked by the open triangles have records shorter than twenty

years. Most of these stations have ceased operation in the last decade or so.

Even some of the stations with longer records are no longer in operation or do

not have complete records. Examples of these are Momote

(2°S, 147"E), Raboul (4°S, 152°E) and Lima (12°S, 77°W). The trend over the

last two decades has been in the direction of a decreasing data base for rawin-

sonde stations over the tropical Pacific.

Figure i. The distribution of tropical rawinsonde stations for which

significant data is included in the NCAR archives.

Excluding the Australian stations, most of the stations in Figure I are

located on islands in the western Pacific. Even amongst the relatively dense

station network that is located in the western Pacific, relatively few stations

are located within five degrees of the equator. In fact, in Figure i,

Singapore (I°N, I04°E) is the only station located within 5 degrees of the

equator that is currently in operation and has a long record of archived data.

For many purposes the equatorial Pacific sector is greatly undersampled.
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3, WINDPROFILERRELATEDRESEARCHIN THETROPICALPACIFIC

Severalwlnd-profiling Dopplerradars have been operated in the tropics

and sub-troplcs. These include the Jicamarca radar (12°S, 77°W) located near

Lima, Peru, the Arecibo radar (18°N, 67°W) located in Puerto Rico and the

Chung-Li radar (25°N, 121°E) located in Taiwan. These radars operate

primarily on a campaign basis and except for Chung-Li are engaged mostly in

middle and upper atmosphere research.

The Aeronomy Laboratory has been involved with the use of wind profilers

in the tropics since 1984 when the Pohnpel wind profiler was installed. The

Pohnpei profiler has been used to measure continuously vertical velocities over

Pohnpel. These vertical motions have been related to convective storms and

rainfall by BALSLE¥ et al. (1988) and the influence of topography at Pohnpei on

the observed vertical motions has been considered by BALSLEY AND CARTER (1989).

The Christmas Island radar was constructed by the Aeronomy Laboratory in 1985

and became operational in April 1986. The Christmas Island wind profiler has

three fixed beams and routinely measures horizontal and vertical velocities.

Wind observations from the Christmas Island profiler are routinely transmitted

via satellite and input onto the GTS. GAGE et al. (1988) have recently ex-

amined the Christmas Island wind observations in comparison to analyzed win6

fields produced operationally by the NMC and ECMWF. They found that the inclu-

sion of the Christmas Island wind observations led to considerable improvement

in the analyzed winds at least in the vicinity of Christmas Island.

The ability of wind-profiling Doppler radars to measure directly vertical

motions provides a useful technique for observing tropical convective systems.

Figure 2 shows the signature of a deep convective system as it passed over the

Pohnpel radar on 20 November 1984. Strong updrafts as shown here probably

represent the first direct measurement of the convective "hot towers" discussed

by RIEHLAND MALKUS (1958). These convective storms are invariably associated

with heavy rain as recorded at the surface.
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Figure 2. Signature of convective "hot tower" as seen by

the Pohnpei wind profiler.
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Averagevertical motionsseen by the Pohnpei wind profiler during its

first two years of operation have been stratified by rainfall rate from surface

measurements to reveal how the vertical motion field is affected by the

presence or absence of convection. The results of this study published by

BALSLEY et al. (1988) are shown in Figures 3-5. Figure 3 shows the results

obtained when the heaviest rainfall periods are averaged. The most intense

vertical motions of magnitude 100-200 cm s-Z are observed in the height range

of 8-14 km. Also shown on Figure 3 is the vertical velocity profile deduced by

GAMACHE AND HOUZE (1982) for the eastern Atlantic during GATE. The direct

measurements are seen to yield peak velocities to considerably higher altitudes

than for Gamache and Houze's result. Indirect measurements of average vertical

motions in convective systems over the western Pacific have been determined by

REED AND RECKER (1971) and these also show a similar disparity with the GATE

results. The vertical profile of condensation heating is related to the verti-

cal motion profile. As pointed out by HARTMANN et al. (1984), the vertical

distribution of diabatic heating in the tropics is important for the

parameterlzatlon of global climate models.

Mean Vertical Wind Profiles in Predominantly
Convective Rain Regions
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Figure 3. Average vertical wind profiles from the Pohnpei profiler

for rainfall rates corresponding as closely as possible

to convective conditions. (After BALSLEY et al. 1988).

Much of the rain that falls in the tropics is now thought to be associated

with mesoscale convective systems. Rainfall in the tropical convective systems

is comprised of heavy showers of limited duration and lighter, more persistent

rainfall. The persistent rainfall is called stratiform rain and is inherent to

the mesoscale convective system. Figure 4 shows average vertical motions in

predominantly stratiform rainfall regions as deduced from the direct
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vertical velocity measurementsusingthe Pohnpelwlnd profiler. The observed

profile at Pohnpei is very consistent with the profile determined for GATE by

GAMACHE AND HOUZE (1985). The downward velocity at the lowest heights is

commonly associated with stratlform rain in mesoscale convective systems.

2O

Mean Vertical Wind Profiles in

Predominantly Stratiform Rain Regions
I I I [ ]

Johnson, 1982

------ Gamache & Houze, 1985

Pohnpei Profiler Data I

i

(October 1984-September 1986)

..... 02" hr -I <-Rainfall Rate <-0,5" hr -l

...... .02" hr -_ -<Rainfall Rate <-03" hr -_ /

0
&

0
-20 -15 -10 -5 0 5 10 15

VedcalVek_iW (cm sec-_)

Figure 4, Average vertical wind profiles from the Pohnpel

profiler between October 1984 and September 1986 for

rainfall rates corresponding as closely as possible

to stratlform conditions. (After BALSLEY et al. 1988).

For predominantly clear conditions at Pohnpei, average vertical motion is

observed to be downward at all heights as shown in Figure 5. The magnitude of

the mean descending motion is what is required to balance the radiative cooling

to space. In magnitude and shape the Pohnpei measurements agree well with

indirect determinations by REED AND RECKER (1971) and McBRIDE AND GRAY (1980).

The Christmas Island wind profiler has provided routine measurements of

horizontal and vertical velocities since late March 1986. A sample day plot of

wind vectors for Christmas Island is shown in Figure 6. Wind observations from

Christmas Island are routinely used by NMC and ECMWF in their operational

analysis and forecast products. GAGE et al. (1988) compared the Christmas

Island observations with the analyses of both centers. A sample comparison for

zonal winds at 500 mb is shown in Figure 7. Statistics of the standard devia-

tion and bias of the observed winds relative to the analyses is shown in

Figures 8 and 9, respectively. Improvement is considerable in both standard

deviation and bias after the introduction of the winds into the analyses. The

Christmas Island winds were first used in the NMC analyses in mid-January 1987

and in the ECMWF analyses in April 1987.
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Figure 5.

Figure 6.
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Average vertical wind profile determined by the
Pohnpei wind profiler for 250 hourly periods between
December 1984 and June 1985, when the sky cover was
_< 30% as determined by the Pohnpei weather station.
(After BALSLEY et al. 1988).
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4. A TRANS-PACIFICNETWORKOFWINDPROFILERS

Theatmosphereacrossthe tropical Pacific Is far fromuniform. Sea
surfacetemperaturesare typically much warmer in the western Pacific than they
are in the central and eastern Pacific. Convection tends to be concentrated

over the warm water which normally resides in the western Pacific. As shown in

Figure i0, large-scala ascent typically occurs centered over the western

Pacific and Indonesian maritime continent. The zonal circulation across the

Pacific basin is referred to as the Walker Circulation. This zonal circulation

is most pronounced during the anti Ei-Nino phase of the Southern Oscillation

which represents the quasi-perlodic interannual variation of the Walker cir-

culation (RASMUSSON AND WALLACE, 1983).

EAST-WEST (WALKER) CIRCULATION ALONG EQUATOR

High

tropospheric
isobaric

.- ........ . surface

Low
T I t_ T ; T tl T ] | T ] f tropospheric

...... ..... _.. ,sobar,c
_L_=.:_.. "" --- t. ""_ ____-%qr-..--_ • su_ace

0 ° 90°E 180 ° 90°W 0 °

From P.J. Webster's Article in

Large-ScMe Dynamical Processes in the Atmosphere
Hoskins and Pearce, Eds., 1983

Figure I0. Walker circulation along the equator. (After WEBSTER, 1983)

The intra-seasonal, seasonal, and interannual variations in tropical sea

surface temperature, tropical convection and atmospheric circulation systems is

a subject of much contemporary research. Variations in the longitudinal dis-

tribution of tropical convection are evident in patterns of outgoing long-wave

radiation measured by satellite (LAU AND CHAN, 1985). Systematic patterns of

low-level convergence and upper-level divergence are clearly associated with

the regions of most intense convection (WEICKMANN, 1983). The influence of the

non-uniform distribution of tropical convection across the Pacific basin is

evident in the longitudinal variation of tropopause properties as discussed by

GAGE et al. (1987). Recent diagnostic studies by REID et al. (1989) show that

the influence of the ENSO signal can be seen at least into the lower strato-

sphere. It is thought that the influence of the varying tropical heating

patterns create global teleconnectlons that influence weather around the globe

(HOREL AND WALLACE, 1981).

Clearly, an understanding of the coupled ocean atmosphere dynamics that

governs the ENSO phenomena is of prime importance in making further progress in

climate forecasting. The Tropical Ocean Global Atmosphere (TOGA) Program is an

international program designed to develop an understanding of the coupled ocean

atmosphere system over the tropics. An important part of the TOGA effort is an

intensive ten-year monitoring program to observe the tropical oceans and atmos-

phere.
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Evidenceis accumulatingthat the westernPacific regionplaysa keyrole
in the initiation of ENSOevents(LUKAS,1988). Sincethe processesthat give
rise to the E1Ninoaresopoorlyunderstood,a coordinatedeffort is neededin
the westernPacific to developthe requisite understandingto makefurther
progress(LUKASANDWEBSTER,1988). TheTOGACoupledOceanAtmosphereResponse
Experiment(COARE)is plannedfor theearly 1990s.

Figureii showsthe Pacific Oceanbasinandthe location of the proposed

network of wind profilers. Profilers are already located at Pohnpei and

Christmas Island. At the eastern end of the network a wind profiler is under

construction at Piura, Peru. At the western end we plan to construct a wind

profiler at Biak, Indonesia, in cooperation with the Indonesian National

Institute of Aeronautics and Aerospace (LAPAN). When the planned International

Equatorial Observatory (IEO) is taken into account, a truly international

network of at least five wind profilers will eventually span the equatorial

Pacific.

_L

Figure Ii.

L
TRANS-PACIFIC PROFILER NETWORK

w

Planned trans-Pacific network of tropical wind profilers.

Wind observations from the proposed network should greatly aid the TOGA

observational effort and provide a valuable new source of observations to

explore a variety of dynamical phenomena in the tropics. The western stations

should be well placed to be of use to the TOGA COARE experiment. The proximity

of the network stations to the equator and the lack of other near-equatorial

stations will provide a new source of observations for the study of equatorial

waves.

The vanishing of the Coriolis force along the equator gives rise to a

spectrum of equatorially trapped wave modes in the atmosphere and ocean (GILL,

1982)_ The oceanic Kelvin waves play an important role in the dynamics of the

E1 Nino. The atmospheric equatorial waves that are known to play an important

role in atmospheric dynamics include the large-scale eastward propagating

Kelvin waves and the westward propagating mixed Rossby-gravity waves. Both

types of waves reside primarily in the tropical lower stratosphere.

Also in the lower stratosphere, but on a much longer time scale, the QBO

is one of the more pronounced quasi-periodic wind oscillations in the atmos-

phere. The QBO is dynamically linked to the upward propagating equatorial

waves that deposit their momentum in the lower stratosphere (HOLTON AND

LINDZEN, 1972). Using the method of VINCENT AND REID (1983) it should be

possible to use a sensitive wind-profiling Doppler radar to observe the momen-

tum deposition in the lower stratosphere.
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In addition to the KelvinandmixedRossby-gravitywaves,significant
troposphericwindoscillations onthe intraseasonaltimescaleshavealso been
identified. The40-60dayoscillations identified byMADDENANDJULIAN(1971)
are clearly related to a large-scalemodulationof tropical convection
(WEICKMANN,1983;LAUANDCHAN,1985)andareaccompaniedby systematicpat-
terns of convergenceanddivergencein the tropical troposphericwindfields.

Observationsfromthe trans-Pacificnetworkof tropical windprofilers
whenanalyzedin conjunctionwith other typesof datashouldhelp improveour
understandingof the interactionsthat takeplacebetweentropical convection,
equatorialwavesandlarge-scaletropical circulation systems.Thesescale
interactions togetherwith the air-sea interactionsthat are the subjectof
TOGAresearchneedto beunderstoodbeforefurther progresscanbemadeon
seasonalclimatepredictions.
5. CONCLUDINGREMARKS

Consideration of the current base of wind observations that are used in

contemporary operational global analyses and forecasts shows major deficiencies

over the tropics. Furthermore, owing to the diversity of tropical circulation

systems ranging from the scale of convection to the scale of the Walker and

Hadley circulations, there is a need to better understand the scale interac-

tions that take place in the tropical atmosphere. At the same time it is

important to press forward on research aimed at a better understanding of the

coupled dynamics of the atmosphere and ocean.

A network of wind profilers spanning the tropical Pacific can contribute

substantially to further progress in understanding the dynamics of the tropical

atmosphere. Additionally, observations from the wind profilers could be used

to overcome deficiencies in the global observation system. Furthermore, long

continuous records of wind observations from these stations should prove in-

valuable in monitoring interannual variations in large-scale atmospheric

circulation systems.

The wind profilers described here generally do not observe below about two

kilometers. Because of the importance of the tropical boundary layer and the

relative lack of observations that are currently available, an intensive effort

should be made to complement the large wind profilers with smaller lower

tropospheric wind profilers. A lower tropospheric profiler that meets this

need has recently been developed (ECKLUND et al. 1988). This lower tropos-

pheric wind profiler can be deployed in networks at a fraction of the cost of

larger wind profilers, suggesting that eventually nested grids of large and

small profilers may be desirable. We are also working together with colleagues

at NCAR to develop an Integrated Sounding System (ISS) that would combine

surface observations with upper-level balloon soundings of wind and temperature

and continuous wind observations using the lower tropospheric wind profiler.

This development should satisfy the need for a sounding system capable of

monitoring temperature and wind fields.
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Dynamics of the Equatorial Middle Atmosphere (Overview)

Susumu Kate

Radio Atmospheric Science Center,
Kyoto University, Uji, Kyoto 611, JAPAN

Equatorial dynamics is unique because the Coriolis force vanishes at the equator tend-
ing to make atmospheric waves non-evanescent for all periods. With increasing latitudes,

increasingly shorter period waves tend to be evanescent reaching the minimum threshold
as 12 hrs at the pole. In the case of tides positive modes are mainly enhanced there in

the equatorial region.
As to the excitation of these waves, the equatorial region is very active thermally

and dynamically. The atmosl)herc-ocean interaction is also very intense. In spite of the
importance of the region, we have been fairly ignorant of real situations of the region,
because of poor atmospheric observation network along the equator. Note that no MST

radar station exists there. Considering the present circumstance the recent observation

with ST radars by NOAA people as discussed at this workshop must be very significant.
Specifically, very long vertical wavelength of diurnal tides observed at Ponape (Avery et
al.) seems l)eculiar and inconsistent with numerical simulations as discussed by Aso at

the WorkshoI). However, such observation nmst be considered seriously in future. One
of most interesting and important dynamical phenomena would be the presence of the

QBO which is now believed to be caused by the interaction of the background zonal flow
and cquatoriM waves as Kelvin Waves and Rossby Gravity Waves. Precise observational
studies with MST radars would be a very exciting problem. Note that recently the QBO

is found to be very extended both horizontally and vertically, presenting an important
index of the middle atmosphere general circulation.
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A COMPARISON OF NUMERICAL MODELLINGS OF TIDES

WITH OBSERVATIONS IN THE LOW LATITUDE MIDDLE ATMOSPHERE

T.Aso

Department of Electrical Engineering

Kyoto University, Kyoto 606

Japan

Introduction

Recent developments in atmospheric radars have indicated the possibility of

illuminating the behavior of tides throughout the whole regions of the middle

atmosphere. The ATMAP program during the MAP, coordinated by FORBES(1985), has

greatly contributed to critical delineation of tidal structures by virtue of

the global cooperation between modellers and observationalists. Comparisons of

horizontal structures, however, reveal the scarcity of data at equatorial

latitudes which, as indicated by KATO(1986), constitute a major route of solar

energy to the atmosphere. Here we will compare some numerical modellings of

steady atmospheric tides with sparse or intermittent observations at lower

latitudes which have so far been obtained by ground-based radar and

meteorological rocket launchings.

Numerical modellings

Numerical modellings are based on the inviscid model in which background

mean zonal wind and associated latitudinal temperature profile are taken into

account (ASO & KATO, 1984). Also referred to are the calculations by the

classical theory, the EGM (Equivalent Gravity Modes) formalism (LINDZEN, 1970)

and the comprehensive viscid model (FORBES, 1982a,b; ASO et al., 1987) at

equinoxes. Only recently the inviscid model is applied to calculate short

vertical wavelength diurnal tide which requires smaller grid size to maintain

numerical accuracies. (FORBES & HAGAN ,1988; also cf. VIAL, 1986) Also, we

have modified our code by expanding the latitudinal structures in terms of

the orthogonal functions rather than discretizing.

Some of the results

Fig. I shows a comparison of the calculations of the altitude profiles of

northerly (left) and westerly wind component of the semidiurnal tides at 15°N

for the invlscid model assuming the solstitial background wind. Numerical

schemes are by the finite difference method (dashed-dot curves ),and the

function expansion method (solid curves) where the associated Legendre

functions of degrees up to 16 are considered. It is seen that two schemes for

the inviscid calculations give consistent results. Also shown are the one

calculated by the classical theory ( dot curves ), and the inviscid one based

on the modified forcing function (broken curves) in which thermal drive due to

radiative heating of water vapor falls off more rapidly. It is seen that the

two forcings produce no drastic change to the altitude structure of the

semidiurnal tide, but the background wind does contribute to some alterations

from the classical theory. A comparison with a GCM calculation of 12 layer

model up to 1 mb level (TOKIOKA and YAGAI, 1987) also gives reasonable

agreement for the migrating semidiurnal component at December solstice.



58

/'"'

BO

_o

• ::-'J "

0 ........... J ....... l ' "

i0-2 lO-_ IO o I0 j IO ;f

NORTHERLY AMPLITUDE (M/S}

I00 .....

z: 80

N

-_= 4o .....'"

I0 -;_ 10-I I00 101 10 2

t/ESTEALY _MPLITUDE (HIS ]

I00

8O

dO

40

20

4 8

NORTHERLY PHASE (HOUR]

I00

80

¢:

4o

2o

0
12

• ' I ' ! ", ,

4 8 12

I/ESTERLY PHASE (HOUR]

Fig.l Inviscid model calculations of the northerly(left) and

westerly wind component of the semidiurnal tide for various

models. See text for details.



59

Fig. 2 showsa comparisonwith the Jicamarcaradarobservationsof the
semidiurnalnortherlyandwesterlywindcomponentin Octoberto Decemberin
the lower stratosphere( FUKAOet al, 1981a,1981b). Calculationsare
inviscid modelfor Decembersolstice ( solid anddashed-dotcurvesas in Fig.
I), modified forcing ( dot curves), classical theory (dashed-double-dot
curves)andthe onebyLINDZENandHONG(1974)(brokencurves). It is seenthat
the observedamplitudeis larger than thenumericalmodellings. The phase
profiles in the OctoberandDecemberruns remaincomparativelyconstant,
consistentwith themigratingtidal theory, but thephasereversalassociated
with node at around30kmis not clearly detected. While, Novemberrun
(squares)showsrapidphasechangecorrespondingto shortvertical wavelength
of abouti0 km. Thissuggests,as is mentionedby the author, the existence

of irregular component as the non-migrating tide or the contamination by other

wave modes, which may sometimes jeopardize quantitative interpretation of

these snap-shot observations within the framework of migrating tidal theory.

For the mesospheric region, comparisons are made in Fig. 3 for the

Jicamarca observations by our run in 1981 (MAEKAWA et al, 1986) and by

COUNTRYMAN and DOLAS (1982). The calculations are the inviscid and classical

modellings as in Fig. 2, together with the viscid one by FORBES (1982b) (open

circle). The amplitude of the zonal wind component of the semidiurnal tide

agrees with modellings. The observed phase values are almost consistent with

each other below 80 km; inferred vertical wavelength is slightly short

compared with theoretical predictions though the phase value is in proximity

to observations at lower altitudes.

For the diurnal tide, inviscid model calculation by the function

expansion method still loses some accuracy due to its small-scale vertical

structures compared with the semidiurnal component. Tentatively, we compare

the observations at Jicamarca in October to December ( FUKAO et al, 1981b,

MAEKAWA et al, 1986 ) with December solstice calculations in Fig. 4. In the

figure, solid curves refer to the invlscid model with maximum degree of 40 for

the orthogonal function, and dashed-dot curves to the classical calculation.

It is noted that the observations are roughly compatible with theory with some

irregular excursions in phase. Early winter observations of the zonal wind

component in May ( shown by + in the same plot for comparison) show rather

large amplitude and short vertical wavelength of about i0 km, which is

consistent with the predominance of non-migrating tides, and is not

reproducible by the migrating mode calculation.

Rocket observations at tropical region summarized by GROVES (1980) are

compared with the numerical calculations. Most of the data are on a short-

term basis. It is seen that the basic structures of amplitude and phase

roughly correspond to calculations, but the irregular features such as is not

compatible with geographic conjugacy across the equator, are at times

superposed upon it. Averaged structures of the rocket observations of the

diurnal northerly wind component at Ascension Island as given by REED et al

(1969) is compared in Fig. 5 with various modellings between 30 and 60 km

region at equinoctial low latitudes. The calculations include the viscid

calculations for the equinoctial mean wind regimes (solid curves) (ASO et al.,

1987), EGM formalism invoking (1,1)+(1,3)+(I,-2) modes (dashed-double-dot

curves), the classical calculation ( broken curves ) and FORBES's calculation

(FORBES, 1982a) (solid triangle). Though the observed phase becomes erratic

at around 40 km where amplitude reaches minimum, reasonable agreement is

evident for both amplitude and phase profiles on an averaged sense.
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text for details.
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RecentlyTSUDAandKATO(1988)calculatedthe diurnal non-migratlngtide
generated solely by assuminglocalized heat source due to land sea
differences. Their results suggestamplitudeof 2 to 3 m/secnear20kmand
vertical wavelengthas short as2 to 5 km. Rocketdataat tropical latitudes
averagedoverseveraldays, byandlarge, indicateslightly moremoderate
phaseprogressionandalso energyflow fromabove,thusthe modellingbasedon
the combinationof steadymigratingtide andthenon-migratingtide ascarried
out by ForbesandGroves(1987)will properlydelineate tidal observations
especiallyat equatorialloweraltitudes.
Conclusions

Brief comparisonof lowlatitude tidal observationsat lower altitudes
with numericalmodellingof tides revealsthat the steady tidal theory
basically or onanaveragedsenseagreeswith observations,andconsiderations
on the irregularity dueto non-migratingtide andothernon-tidal components
mightresolvesomeof thediscrepancyandvariabilities.

At higheraltitudes, tides are more properly delineated by existing tidal

theory, and further sophistication with respect to forcings, mean wind,

dissipation and interaction processes warrants more adequate delineation of

tidal variability.
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OBSERVATIONS OF EQUATORIAL MESOSPHERIC MEAN WINDS AND TIDES

S.K. Avery, R.L. Obert, and J.P. Avery

University of Colorado, Boulder, CO, USA

A meteor echo and detection system has been designed for use on many VHF radars. This
system operates in parallel with the normal operation of ST/MST radars except for the lengthen-
ing of the interpulse period to avoid range aliasing in the 80-100 km height range. The prototype
system is described in WANG (1988) and has been modified to incorporate a more robust detec-
tion algorithm using discrete Fourier transforms. The system has been field tested on the ST
radar at Platteville, Colorado and performance tested on the Poker Flat, Alaska MST radar. We
have packaged the system for use in remote areas and have installed it on the NOAA ST radar

located at Christmas Island (2° N, 158° W). In this presentation I will describe the mean winds
and tides during August and September 1988 that were observed using this system.

The average meteor echo rate on the east antenna beam as a function of height for August-
September is shown in Figure 1 (top). The height profile is typical of what we expect from a
VHF radar. The echo rates are small compared with a regular meteor radar system because of the
narrow antenna beamwidth used with ST radars. An anomalous echo was observed during

August 8-11. As seen in Figure 1 (bottom) this echo occurred between 92-96 kin and is either an

echo from the electrojet, or from clear-air turbulence, or possibly from space debris. The average
diurnal echo rate on the east antenna beam for this same period is shown in Figure 2 (top). Peak
echo rates occur during the morning hours. The day/night ratio is approximately 3:1. The
anomalous echoes occurred between 1600-1900 local time (Figure 2, bottom),

The monthly mean winds for August and September are shown in Figure 3. In general the
winds are westward with peak magnitudes of 12 ms -1. The wind crosses over to an eastward
direction at approximately 96 kin. The meridional profile generally shows southward winds at
lower heights with northward above 96 km. The weekly averages (not shown) indicate
significant long period wave activity.

The diurnal tide height profile for August is shown in Figure 4. Average amplitudes are
20-40 ms -t which are considerablylarger than what models suggest. Long vertical wavelength
modes are apparent in the meridonal component. The zonal component shows evidence of a mix-
ture of higher order modes.

The semidiumal tide is weaker than the diurnal tide (Figure 5.) Amplitudes are approxi-
mately 10 ms-L During August there was a peak in the amplitude of 30 ms -1 confined to a fairly
narrow (3 km) layer at a height of 91 kin. The observed phase indicates a propagating wave with

a verdcal wavelength of 48 kin. The dashed lines in this figure represent the results from a new

model which simulates monthly semidiumal tidal structure VIAL & FORBES, (1988).

The model amplitudes are weaker than what is observed. There is excellent agreement in
the meridional component between the model and observations. The model zonal component

shows an evanescent mode structure whereas the observed structure represents a propagating
mode.

The Christmas Island MEDAC system is providing us with the first long-term measure-
ments of equatorial mesospheric winds. We plan to do a thorough analysis of the long period

temporal variability of the winds. We will also be comparing our results with those obtained with
a 2.6 MHZ radar which will be installed by R. Vincent in the near future.
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THE INTERPRETATION OF MST RADAR ECHOES:

THE PRESENT KNOWLEDGE OF THE SCATTERING/REFLECTION AND THE

IRREGULARITY GENERATION MECHANISMS

(Keynote Paper Session 3)

JOrgen Rottger*

EISCAT Scientific Association

P.O.Box B12

S-981 28 Kiruna, Sweden

(* on leave from Max-Planck-Institut for Aeronomie)

INTRODUCTION

There is no unified opinion noticeable yet which mechanism may be the most

relevant to cause the echoes of MST radars from the mesosphere, stratosphere and

the troposphere. We only could distinguish so far between the major process of

scattering/reflection from refractive index irregularities due to temperature,

humidity and electron density fluctuations on the one side and the other two

processes, namely scatter from hydro-meteors in the troposphere as well as

incoherent scatter from free electrons in the mesosphere, which cause the obser-

ved radar echoes. The major echoing process can be described by severel mecha-

nisms as is delineated in the following Table 1.

Table 1
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in order to explain the relevant MST radar observations, two different basic

echoing mechanisms are required, namely scattering and ref)ectlon. These, how-

ever, have to be adapted into quite diverse deviations from these two idealistic

cases. For monostatic radars, backscatter and reflection arises frollt the ComDO-

nent of the spatial spectrum of the variation of the refractive index n_ whose

spatial scale along the axis of the radar beam ls half the radar wavelength,

i.e. a few meters for low VHF and less than a meter at UHF. This process has

been called Bragg or turbulence scatter if a radar volume is homogeneously

filled with randomly distributed and fluctuating irregularities; whereas it is

called (partial) reflection if an inhomogenelty in form of stable discontinui-

ties or steps of the refractive index exists. The latter case most likely occurs

at longer radar wavelengths. We know that these two idealized cases rarely occur

but have to be replaced by more realistic models.

Since it is well documented from the aspect sensitivity and persistency of

radar echoes that partial reflections from steep vertical gradients of the

refractive index (discontinuities_ are observed by vertically beaming radars

operating around 50 MHz, we have to extend the radar equation for this condi-

tion. when applying this combined radar equation, essential assumptions for a

meaningful interpretation have to be fulfilled which frequently are found not to

be realistic. For the applicability for the scattered part of the signal, the

scattering volume has to be homogeneously filled with irregularities; otherwise

a filling factor has to be introduced. The scattering process has to be isotro-

pic; otherwise the scattered power would depend on the look angle of the an-

tenna. One also has to consider that the amplitude reflection coefficient cannot

be uniquely determined, since it strongly depends on the shape of the refractive

index profile wlthin a distance of less than one radar wavelength (namely the

spatial Fourier transform of the profile, evaluated at half the radar wave-

length). It is also frequently observed that there is more than one partially

reflecting discontinuity in the radar volume, and then the reflection coeffi-

cient is an even more uncertain parameter.

BRAGG SCATTER, FRESNEL SCATTER, AND FRESNEL REFLECTION

It is not readily possible to discriminate between the different basic proces-

ses of scattering and partial reflection without investigating particular featu-

res of the radar echoes, such as their aspect sensitivity, temporal and spatial

coherency and their spectral shape. In general it has become accustomed in the

MST radar community to apply a nomenclature which is basing on the principal

schematics of the different refractive index formations shown in Fig. I. There

exist many papers dealing with the theory as well as experimental methods to

investigate the scattering and reflection mechanisms and we will only delineate

the basic characteristics (see list of references at the end of this paper for

details), we have to note here that the applicabllity of these mechanisms to

explain echoes from the atmosphere depend on the wavelength of the used radars.

The reason is that the refractive index variations, which cause the echoes, have

no unified characteristics at the different spatial scales corresponding to the

radar wavelengths and Fresnel zones.

The principle scattering mechanism is frequently called Bragg scatter and the

term turbulence scatter is also used, or more recently also the term "Pekeris

scatter" (Gossard, personal communication 1988). The Bragg scatter can be iso-

tropic, i.e. without causing a radar aspect sensitivity, if the turbulent ir-

regularities of refractive index are homogeneously random and statistically

similar in all directions. Bragg scatter can be anisotropic, causing an aspect

sensitivity if the statistical properties of the irregularities, namely their

correlation distances, are dependent on direction. Although the angular (spa-

tial} dependence of the radar echoes, i.e. the aspect sensitivity, for these two
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Fig. 1. Schematic depiction of the spatial variations bn of the refractive
index n in the vertical direction z (from ROttger and Larsen, 4989). Depending
on the structure of n within the range gate 6z, the different processes of
Bragg scatter, Fresne] scatter and Fresnel reflection can occur. The abscissa
n could also resemble the horizontal direction x, namely indicating schemati-
cally the relative horizontal extent of surfaces of constant refractive index
variations (or their horizontal correlation distance) for the different pro-
cesses. Note that Bragg scatter occurs at every range where the variation of n
is similar to that In the indicated range Oz. Thermal electron density fluctu-

ations, which cause incoherent (Thomson) scatter from the mesosphere, are much
weaker than the indicated variations of n, whereas the scatter cross sections
of precipitation is usually larger than the indicated changes of n.

processes - isotropic and antsotropic Bragg scatter - is different, the temporal
variations of the radar echoes should be slmtlar because of the randomly fluctu-
ating irregularities. The Oopp|er spectrum shou]d approximately reveal a Gaus-
sian shape.

Fresnel sqatter occurs if, instead of a random ensemble of irregularities,
just a few refractive index discontinuities in vertical direction exist in the
range gate. These discontinuities are still randomly distributed in the verti-
cal, but have a large correlation distance in the horizontal direction. The
radar echo characteristics resemble a distinct aspect sensitivity, but because
the discontinuities are statistically Independent, the temporal echo character-
lstics should be similar to those of Bragg scatter. Because of the statistical
distribution of the discontinuities, the average power profile should fairly
smoothly vary with altitude.
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Fresnel reflection is observed if a single, dominating discontinuity of the
refractive index exists in vertical direction, which has a large horizontal
extent, similar to the ensemble of discontinuities for the case of Fresne|
scattering. A very distinct aspect sensitivity should be observed. High resolu-
tion vertical power profiles or height-time Intensity plots should reveal out-
standing spikes, or thin and persistent structures, respectively. Also the
temporal characteristics should lndtcate long coherence ttmes. This kind of
process is also called "partial reflection", because only a very small fraction
of the incident power is reflected. Fresnel reflection is also called "specular
reflection" by some authors tf the horizontal surface of the discontinuity is
assumed to be very smooth, and it is called "diffuse reflection" if the discon-
tinuity is assumed to be corrugated or somewhat rough. The case of anisotropic
scatter has been considered, too, end appears to offer another realistic pos-
sibility to explain the scattering mechanism.

Fresne] scatter and reflection occur more likely on longer radar wavelengths,
i.e. in the 10w VHF bend. The terms Fresnel scatter and Fresne] reflection have
been introduced due to the condition that the horizontal correlation distance of

the discontinuities is in the order of the Fresnel zone (z-_) it2. For correla-
tion distances smaller than a fraction of the Fresnel zone, Bragg scatter has to
be considered. The Fresnel zones of radars in the UHF and VHF band are usually
smaller than the region in the troposphere and stratosphere, which ts illumi-
nated by the radar beam. Thus, the beam width limiting effect has not to be
considered. It is perceived that the definition of Fresnel scatter and Fresnel
reflection depends on the range gate width, i.e., tt is more likely to observe
Fresne] scatter with coarse height resolution, and to observe Fresnel reflection
with good height resolution. The discontinuities must be in the order of a radar
wavelength, or less in vertical direction, but widely extended in horizontal
direction, which, because of diffusion reasons, ts more likely to happen at
larger verttca] scales. The nomenclature of thin "sheets" or "laminae" to de-
scribe the 50 HHz observations was taken from oceanography where a similar fine
structure is observed. The reason for the coexistence of refractive index turbu-
lence and discrete discontinuities (sheets) could be for tnstance due to the
gradients developing at boundaries of turbulence layers, or some other yet
unproved mechanisms. Simulations and computations, compared with distribution
functions of radar echoes on 50 HHz, demonstrate that signals do occur from
certain altitudes which are consistent with the model of reflection trom a
single, diffuse sheet, causing focussing and defocussing.

Although a fine structure of radar echo power is also observed on 430 MHz on
440 MHZ and on 2380 MHZ, it is not obvious that the fine structure observed on
50 MHz with vertical beam, is of similar origin or nature. It is likely that
radars in the UHF band will detect Bragg scatter only, whereas radars in the VHF
band will usually detect a combination of the different processes, particularly
when using a vertical beam. There are apparently weak Gausstan-shaped background
spectra observed on which narrow spikes are superimposed. The Gaussian parts of
the spectra are supposed to be partly due to Bragg scatter from a background of
turbulence, and partly due to scatter from off-vertical irregularities carried
by the wind _beam width broadening). 7he superimposed spikes in discrete fre-
quency bins are either due to Fresnel scatter, or more Itke]y due to Fresnel or
diffuse reflection from a rough surface, i.e. several discrete regions of high
reflection coefficient which move with different velocities. Jt is noted that
the spectra of 50 HHz radars are not particularly governed by the spikes if the
antenna is pointed far enough off-zenith ( > 10o-15o_, such that the (isotropic)
Bragg scatter component dominates. It ts also noted from spectra, as well as
from the aspect sensitivity, that Fresnel scatter and particularly Fresne!
reflection yield generally a larger echo power than Bragg scatter from turbu-
lence.
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CONSEQUENCES OF THE SCATTERING/REFLECTION PROCESSES

With near vertical beam of 50 MHz radars the observed echoes are usually a
combination of the summarized scattering/reflection processes, although one
mechanism may dominate at any given time, and the relative contributions of
humidtty and temperature also vary. These effects have consequences for (aJ the
interpretation of the MST radar echoes, (b) the analysis methods and data acqui-
sition procedures, as well as (c) the technical design of the radar hardware,
and td) the choice of operating methods. The essential considerations, particu-
larly holding for radars operating on VHF, are summarized here:

(1) The deduction of the turbulence refractive index structure constant Cnz from
signal power or velocity fluctuations is difficult. The determination of the
reflection coefficient is possible, in principle, but it does not allow the
shape of the reflecting laminae to be deduced. It is not yet conceivable how to
make a clear distinction between the contributions of humidity and temperature
variations to the scattering/reflection process in the lower and middle tropo-
sphere. The estimate of velocity fluctuations, i.e. the turbulence energy dissi-
pation rate _ from Cnz, is not accurately possible. The discrimination between
Fresnel reflection, Fresne] scatter, anisotropic and isotropic Bragg scatter is
not unambiguous. These processes can even be regarded as Interrelated.

(2) Non-volume filling scatter and reflection from several laminae have an
influence on the accuracy of velocity determinations. The often simultaneously
occurring scattered and reflected signal components need to be separated and
treated by different analysis procedures. The effective beam angle is changed
due to anisotropic scatter and reflection.

(3) If off-vertical beams are used, antenna sidelobes close to the zenith direc-
tion have to be sufficiently suppressed to reduce unwanted signals of reflected
components. Otherwise signal power and velocity estimates will be inaccurate.

(4) It is noted that, in addition to the evident aspect sensitivity and a larger
persistency, the echoes due to Fresnel scatter and Fresnei reflection are fre-
Quently much stronger than the echoes due to Bragg scatter. This enhances the
radar sensitivity and allows 50 MHz radars to detect echoes from larger altitu-
des with vertical beam than with off-vertical beam.

(5) The so-called Doppler method is more convenient and applicable for measuring
wind profiles when scattering processes are dominant (i.e. at large off-vertical
beams at VHF, or at UHF generally). The spaced antenna method, using vertical

beams, may be more efficient for measuring wlnd profiles when Fresnel scatter or
reflection processes are dominant, i.e. at VHF. The Doppler method has been

applied most frequently, but the spaced antenna method has further advantages,
as will be explained in the following chapter.

On-going work on the subjects summarized under items 1-4 will likely shed more
light on the processes, resolve remaining ambiguities and lead to a generalized
procedure for deducing atmospheric parameters with an optimum accuracy and
reliability. The difference of these mechanisms could be resolved by some mea-
surement techniques which allow to partly discriminate between these mechanisms.

THE USE OF NEW TECHNIQUES

MST radars are usually operated in the Doppler mode, where several antenna
beam directions are used to deduce the three-dimensional wind velocities from
the Doppler spectrum. Occasionally also the so-called spaced antenna mode is
applied to deduce the wind velocity from the cross correlation analysis of sip-
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Fig. 2. The scheme of measurement and analysis techniques
of the spaced antenna configuration of an NST radar.

nals received at separate antennas. Both these methods of course allow the
measurement of some additional parameters, such as the signal power, the cohe-
rence time, the angular dependence or the spatial coherence as well as the
amplitude distribution functions. These are useful parameters to study the
scattering/reflection mechanism. Neither the Doppler nor the spaced antenna
method need the measurement of the spatial distribution of the signal phases on
the ground. In this paper we will point out some advantages of amplitude and
phase measurements with a spaced antenna set-up and prove the applicability of
this radar interferometer method to deduce additional signal parameters, which
the conventional Doppler and spaced antenna methods cannot supply.
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In accordance to the term frequency domain tnterferometry, the method using
several antennas is called the spatial domain tnterferometry or simply spatial
tnterferometry. The frequency domain interferometry allows to improve the reso-
lution in the radial (t.e, range) direction, whereas the spatial domain inter-

ferometry improves the resolution in the direction perpendicular to the beam
direction (i.e., mostly horizontal). The latter method allows for instance to

measure the angular spectrum (i.e., the aspect sensitivity), the incidence
angle, the corrected vertical and horizontal velocity as well as to determine
horizontal phase velocities of atmospheric gravity waves and to track turbulence
blobs, Post-beam-steering and the cross spectra analysts can be applied to study
waves and turbulence in the stratosphere and the mesosphere, respectively. The
original method of cross spectrum and coherence analysts was developed to study
scattering from E-region irregularities with the 50-MHz Jtcamarca VHF radar.
This method was also applied to measure incidence angles with the Chung-Li VHF
radar and to investigate polar mesosphere summer echoes with the 224-MHz EISCAT
VHF radar. We envisage essentially more details of the scattering/reflection
mechanism by the application of the spatial and frequency domain interfero_try.

In Fig. 2 we have summarized the different methods which can be applied with
MST radar in the spaced antenna mode to measure atmospheric parameters, lhts is
particularly emphasised since it is often thought that the spaced antenna method
is barely the "spaced antenna drift" technique to measure the drift speed of
refractive index irregularities and deduce the horizontal wind. This technique
is only a minor part of the total, indicated by the branch including the square-
law detector in Fig. 2. All further applications make use of the phase informa-
tion, such as the interferometer, the post-beam-steering and the post-statlstics

method used with the SOUSY and the Jicamarca VHF radar, respectively.

POSSIBLE MECHANISMS FO GENERATE CERTAIN TYPES OF RADAR ECHOES

Some processes which could be generation mechanisms for the observed radar
echo structures should now briefly be discussed. These mostly are related to
atmosphere dynamic processes such as those outlined in Table 2, which shows the
interrelation of atmospheric waves and turbulence as seen by MST radar.

Long-period waves undergo non-linear steepening or tilting when their phase
velocity C approaches the wind velocity U. Through the approach of superadia-
batic lapse rate and velocity shear, Kelvin-Helmholtz instability (KHI) is
activated and quasi two-dimensional turbulence is generated. Turbulence scatter
or Fresnel reflection from the boundaries of the turbulence layers can occur.
Also steep temperature inversions _stable sheets or laminae) could be caused by
the steepened waves, which can be seen by Fresnel reflection.

Short-period waves, propagating upwards from lower atmospheric sources or
generated in-situ by KHI or by two-dimensional turbulence arising from long-
period waves, undulate these layers of turbulence or the laminae of temperature
inversions. Besides of transferring energy to long-period wave modes by wave-
wave interaction these short-period waves can grow in amplitude by KHI (local
generation) or due to energy conservation of upward propagating waves. Non-
linear tilting, steepening and/or parametric instability can occur. The develop-

ment of tilting can be observed by Fresnel reflection due to the concurrent
distortion of isotherms during KHI.

Non-linear tilting of short period waves can cause overturnlng and breaking
through the Rayleigh-Taylor instability (RTI). Since this happens at certain

phases of the wave, localized regions of small-scale turbulence occur. Ihese are

seen by VHF radars as blobs or bursts, which are propagating with the phase
speed of the wave. Blobs can spread into wider spatial scales by multiple rape-
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Table 2

Interrelatlon of Waves and Turbulence as Seen by Radar (from Rbttger, 1987)

long-period waves

C--, U

nonlinear steepening

velocity shear, temperature inversions
(stable)lapse rate

(unstable)

KHI •

quasi-2-D
turbulence

turbulence scatter

or

Fresnel reflection
from

boundary of
turbulence layer

in situ

short-period waves

Fresnel reflection

(u_ radar)
due to

persistent
sheets or laminae

wave--wave

= interaction
41L

undulate "--------.........._
layers of turbulence | sheets

I t I
growth of wave amplitude by Km (local generation) or
from energy conservation of upward-propagating waves

i
nonlinear steepening,

parametric instability

distortion of
isotherms during

KHI

Fresnel _reflection

and

scattering

Fresnel scatter

nonlinear

_ wave tilting

RTI

overturning,
breaking

Secon_/dary Km

turbulence blobs aTI etc.

deca_yinto str°_ng

t..uu..k.i._e,..,, la"ers7 _'4-"-- turbulence

generation of scattenng

temperature gradients, . ,
dissolve into multiple sheets
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tition of KHI/RT[ and cause thick layers of strong turbulence, lhrough the
turbulence layers corrugated temperature gradients are generated and the layers
can dlssolve into muittple sheets or laminae which can be regarded as remnants
of active turbulence. Again waves, generated elsewhere, can undulate these
turbulence layers and the laminae. We, thus, close the dynamical circle to
explain the simultaneous observations of often independent, individual small-
and meso-scale gravity waves and turbulence.

The described interrelation of s variety of dynamical phenomena in the stmo-
sphere can explain the earlter recognized characteristics of VHF radar echoes,
namely blobs, sheets and layers. They are consistent with accepted theories and
observations of gravity waves and instabilities and they also support the notion
of a coexistence of gravity waves and turbulence in the middle atmosphere.

CONCLUSION

The interpretation of radar returns from the clear air has been and still is
in a long-lasting dispute. Is this just resulting from a semantic misunderstand-

ing or preference of approaches to study the phenon_non or does it result from
different physical phenomena? There are certainly different meteorological and
aeronomica] phenomena, which cause the different signa] characteristics. In any

case we can discriminate between the two extreme models of the echoing process
itself: Scatter by random, non-deterministic fluctuations of the refractive

index in space and time, which can be isotropic and anisotropic. These fluctua-

tions result from neutral air turbulence of convective or dynamic origin. The
anisotropic approach, however, is already at the limit of becoming deterministic

in two coordinates. Reflection is from a refractive index discontinuity between

horizontally stratified air masses of different refractive index, resulting from

horizontal flow pattern, radiation, evaporation or electron density structures
in the mesosphere. There are also clear indications for the coexistence of the

two major mechanisms, namely the thin and almost horizontally stratified laminae
of refractive index, which appear to be corrugated by background turbulence, the

pronounced aspect sensitivity and long persistency which transits into isotropy

and random fluctuations at larger aspect angles and the non-Gaussian shape of
the Doppler spectra and signal components.

The transition between the classical turbulence scatter and reflection mecha-

nisms and the scatter from hydrometeors needs to be considered also and wil} be
discussed elsewhere as will the transition of turbulence scatter to incoherent

scatter [Thomson scatter from the ionosphere}. The former has for instance been
done at the MU radar where the drop-size distribution was derived. The latter

has been investigated at the EISCAT radars as polar mesosphere summer echoes

(PMSE}, which are neither generated by incoherent scatter nor turbulence scat-
ter.

There had been some interesting recent developments and approaches for improv-

ing our understanding of the radar returns and the atmospheric structure, these
are: The measurement of the frequency dependence of the MST radar echoes, the

analysis of the signal statistics, modelling of the structures and the resulting

radar returns, interferometer applications in space and frequency, vorticity and
divergence measurements for instance. Further understanding will be gained by

the combination of radar measurements with other methods, such as in-situ mea-
surements with balloons, rockets and aircrafts. Also the extension of radar

systems by radio-acoustic-sounding systems [RASS), LIDAR and SCIDAR £Scintllla-

tion measurements) is turning out to be very useful.

More details on the mentioned observations, mechanisms, interpretations and
techniques can be found in the following list of references.
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ASPECT SENSITIVITY OF MESOPAUSE SUMMER ECHOES AT VHF

Iain M. Reid and Peter Czechowsky

Max-Planck-Institut fiir Aeronomie, Katlenburg-Lindau, FRG.

The mobile SOUSY VHF (53.5 MHz) Radar, located near Andenes (69°N, 16°E) on

the Norwegian Island of And0ya, has been used to measure the aspect sensitivity of

the very strong radar returns obtained from near the summer polar mesopause. This

so-called Polar Mesopause Summer Echo (PMSE) exhibits substantial aspect sensitiv-

ity, with angular polar diagrams of the backscatter of 2-10 ° half-power half-width for

a two day average. Because the half-power thickness of the echo is less than 1 kin,

and the associated radar returns very strong, the grating lobes of the antenna polar

diagram can be utilized as additional beams, and the power returned at angles of 35

and 38 ° off-zenith obtained. After correction for the antenna polar diagram, the powers

measured in the grating lobes are about 20 dB less than those returned from the zenith.

These measurements provide a estimate of the ratio of the specular to the turbulent

contributions to the backscatter. A similar echo occurs at mesopause heights in sum-

mer at higher mid-latitudes (52°N). It too exhibits substantial aspect sensitivity, with

a half-power half-width of about 6 °. A more complete description of these results is

given in CZECHOWSKY et al. (1988), REID et al. (1988) and CZECHOWSKY and

REID (1989).
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Fig. 1 Antenna radiation pattern of the mobile SOUSY VHF Radar lo-

cated at Andenes in northern Norway. The solid line represents

the polar diagram for an off-zenith angle of 5.6 ° at planes par-

allel (AZ = 0 °) and perpendicular (AZ = 270 °) to the dipole

direction. The dashed line shows the diagram for an off-zenith

angle of 4° in directions of AZ = 45 °, 225 ° and 315 ° to the dipole

direction. [After CZECHOWSKY et al., 1988]
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Fig. 2 Backscattered power measured with the main beam at off-

zenith directions of 4 ° and 5.6 ° and with the grating lobes at

35 ° and 40 ° (see Figure 1) relative to that received in the ver-

tical beam. The three curves represent the returned power

as a function of the off-zenith angle _ given by: Pe/Pv =

exp(-sin_8/ain28s) where 8s is the half width of the an-

gular polar diagram of the backscatter. The measurements

obtained with the grating lobes of the antenna in Andenes

provide an estimate of the ratio of the specular to the turbu-

lent contribut}ons of the backscatter [after CZECHOWSKY

et al., 1988].
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ted as a function of off-zenith angle.
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according to the formular given in Fig-

ure 2 [after REID et al., 1988].
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ABSTRACT

Conventionally, atmospheric aspect sensitivity of VHF radar echoes is measured using a
narrow beam radar in order to avoid the complications due to broad beam effects. However, in
this study, a new technique using beam broadening effects has been developed. It used the
relatively broad antenna beam (half power beam width is 7.4 deg) of the vertically pointing antenna
of the new Chung-Li VHF radar. The aspect sensitivity measurement using this method is
straightforward and free from the convolution effects introduced by the finite width of the antenna
beam pattern. The observed value at heights from 2 to 8 km is about 0.5 dB/deg to 1 dB/deg
which agrees very well with other measurements.

INTRODUCTION

Since WOODMAN and GUILLEN (1974) successfully measured the stratospheric and
mesospheric wind field and turbulence with the Jicamarca VHF radar by using the modem MST
radar technique, the fields of VHF radar probing the lower and middle atmosphere have been
established. It is well known that, using powerful VHF radars, many important atmospheric
parameters and dynamic phenomena, such as 3-dimensional wind fields, tropopause height,
atmospheric refractive index structure constant (Cn2), turbulent energy dissipation rate,
atmospheric stability, gravity wave characteristics._ turbulent structure, etc., can be measured or
observed (GAGE and GREEN, 1978, 1979; ROTTGER, 1980; VANZANDT et al., 1978;
HOCKING, 1983a,b, 1985, 1987).

There are many kinds of echo mechanisms proposed by different scientific workers to
explain the properties of MST radar returns. The so-called "isotropic turbulent scattering"
proposed by BOOKER and GORDON (1950) explained the results of troposcattering; GAGE and
BALSLEY (1980) and DOVIAK and ZRNIC (1984) took "anisotropic turbulent scattering" for
illustrating the phenomenon of atmospheric aspect sensitivity (GAGE and GREEN, 1978;
ROTFGER et al., 1981; TSUDA et al., 1986). The concept of "Fresnel scattering" was introduced
by GAGE et al. (1981) to account for the echoes from volume filling of specular layers observed
by VHF radar. "Fresnel reflection" (or partial reflection) is also an important echo mechanism of
MST radar and has been confirmed by many experimenters (ROTTGER and LIU, 1978;
ROTTGER, 1980) and the echo mechanism of "diffuse reflection" has been discussed by
RtDTTGER (1980).

Atmospheric aspect sensitivity (or angular spectrum) has been measured with MST radars
for many years (ROTTGER and VINCENT, 1978; VINCENT and ROTFGER, 1980; RtJTFGER
et al., 1981; WATERMAN et al., 1985; SATO et al., 1985; TSUDA et al., 1986; HOCKING et
al., 1986). The width of the angular spectrum is closely related to atmospheric stability: the more
stable the atmosphere, the more narrow the angular spectral width, and vice versa. The physical
mechanisms that cause the angular dependence of VHF radar echo power are not yet fully
understood. However, there are two possible echo mechanisms responsible for the aspect
sensitivity which have been discussed extensively by many scientific workers. One is diffusive
reflection from the corrugated refractive index surface (RATCLIFFE, 1956; ROTFGER, 1980),
and the other is anisotropic turbulent scattering (DOVIAK and ZRNIC, 1984; WATERMAN et al.,
1985; WOODMAN and CHU, 1988).
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Theexistenceof aspect sensitivity will influence the accuracy of _e atmospheric parameters
evaluated from the Doppler spectrum of vertical or close to zenith pointing radar returns, such as
horizontal wind velocity, turbulent rms velocity, etc. (ROTTGER, 1980; TSUDA et al., 1986;
HOCKING et al., 1986; HOCKING, 1987). Therefore, it is very important to measure accurately
the correct aspect sensitivity before making an evaluation of atmospheric parameters from a VHF
radar Doppler spectrum. The current method of aspect sensitivity measurement used at most MST
radars around the world is the so-called beam swinging method, that is, tilting the radar beam
continuously toward different zenith angles, the aspect sensitivity will then be obtained after
evaluating the echo power for each pointing direction. The aspect sensitivity measured with this
method is different from the actual one, because of the convolution effect with the antenna beam
pattern. In this paper, a new method of aspect sensitivity measurement by using the beam
broadening effect from the Doppler spectrum of vertically pointing radar beams, developed at the
Chung-Li VHF radar in Taiwan, ROC, (WOODMAN and CHU, 1988), will be introduced and the
results of measurements are also presented and discussed.

CHARACTERISTICS OF THE CHUNG-LI VHF RADAR

The Chung-Li VI-IF radar is located on the campus of the National Central University in
Taiwan, ROC, (25°N, 121°E). The operation of this radar began on June 1,1985. It consists of
three identical and independent modules, the antenna area and peak transmitted power of each
module are 1600 m2 and 60 kW, respectively. The antenna module is composed of 64 (8x8) Yagi
antennas arranged in a square of sides 40 m. The antenna configuration is shown in Figure 1. The
radar frequency is 52.2 MHz (radar wavelength is 5.77m), and the pulse width can be set as 1, 2,
4, 8, and 16 ItS arbitrarily. The maximum duty cycle is 2%. The phase code is a complementary
code with 2, 4, 8, or 16 elements. The direction of the radar beam for each antenna module or for
full antenna aperture can be pointed independently from zenith toward northeast, southeast, south-
west, northwest with fixed zenith angle 17° and the beams can also be pointed vertically. The
azimuth angle for the off-vertically pointing beams are shown in Figure 1. The half power beam
width (HPBW) for each module and full aperture is 7.4 ° and 5 °, respectively. The maximum
probing range is about 1 to 25 km. However, occasionally, the echoes of mesospheric
irregularities can be observed (CHU et al., 1988a). The characteristics are summarized in Table 1.

THE METHOD OF ASPECT SENSITIVITY MEASUREMENT WITH VERTICALLY
POINTING RADAR BEAMS

The Doppler spectral width is an extremely important VHF radar echo parameter. Much
atmospheric information, such as turbulent rms velocity and energy dissipation rates, can be
evaluated from this radar parameter. However, there are quite a few physical mechanisms which
can contaminate the width of the Doppler spectrum. For example, the beam broadening effect,
wind shear effect, and gravity wave oscillation effect will broaden the Doppler spectral width
(ATLAS et al., 1964; GAGE and BAI.,SLEY, 1978; BRIGGS, 1980; HOCKING, 1983a,b, 1985,
1986), whereas the Doppler spectral width will also be narrowed by the aspect sensitivity for
vertical or close to vertical pointing radar beams (ROTI'GER, 1981; WOODMAN and CHU,
1988). Therefore, because of the broadening and the narrowing effects coexisting in the observed
Doppler spectrum, the estimation of true atmospheric information from spectral width will be
impossible if the contaminating factors are not thoroughly removed from the spectrum.

For a sufficiently broad antenna beam, if the echoing mechanism is isotropic turbulent
scattering, the observed echo power at a specified Doppler frequency, f, will then be the integration
result of the echo power scattered from the refractive index fluctuations which are located linearly
within the radar volume with the corresponding angular positions and arranged perpendicularly to
the horizontal wind direction. From Figure 2 it is easy to show that the signals returned from the
irregularities located on the line AB will have the same Doppler frequency, f, and the mathematical
relation between f and zenith angle O measured along the horizontal wind direction will be

f=-2 U O/'k (1)
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Figure I. The configuration of the Chung-Li VHF radar antenna. The arrows with dashed tails
are the pointing directions of the radar beam and the arrows with solid tails are the geographic
direction.

Table 1. The Characteristics of the Chung-Li VHF radar.

Location Chung-Li, Taiwan (25°N, 121°E)

Frequency 52.2 MHz
Wavelength 5.77 m

Peak transmitter power
(for each module) 60 kW
Pulse width 1 - 16 gs

Maximum duty cycle 2%
Antenna

Type 3 square arrays of Yagi (8x8)
HPBW 7°

Steerability Vertical and North, East, South,
West with 17 ° zenith angle

Total geometrical area 3x1600 m 2
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where U is the horizontal wind speed, X is the radar wavelength. The Doppler spectrum thus
obtained is called the beam broadening Doppler spectrum or nonturbulent Doppler spectrum
(HOCKING, 1983a). However, if there is aspect sensitivity in existence, the shape of the
observed Doppler spectrum for a vertically pointing broad antenna beam will be determined from
the multiplication effect between the beam broadening Doppler spectrum and the aspect sensitivity
if the wind shear, turbulent fluctuation and gravity wave oscillation effects are all neglected, as
shown in Figure 3. The dashed curve in Figure 3 represents the aspect sensitivity, A(f), the dotted
curve is the beam broadening Doppler spectrum, B(f), responsible for a given horizontal wind
speed and the antenna beam pattern, and the solid curve represents the observed Doppler spectrum,
S(f). Therefore, the mathematical relationship between S(f), B(f), and Aft) can be described as
follows:

s(f) = Aft) • B(0 (2)

The beam broadening spectrum can be easily estimated if the Gaussian assumption of the antenna
beam pattern is made and the horizontal wind speed is known. The width of this spectrum will be
(HOCKING, 1985; CHU, 1986):

o = U 00.5/(2"42 In 2) (3)

where (_ is the beam broadening spectral width, 00. 5 is the HPBW. Therefore, the aspect
sensitivity, A(@), will be evaluated by the following equation:

LoG A (O) = Log S(f) - Log B(f) (4)

where the relationship between f and @ is shown in equation (1). The aspect sensitivity measured
in this way results from the narrowing effect on the beam broadening Doppler spectrum of the
vertically pointing radar beam. The beam broadening effect contributed to the observed Doppler
spectrum will be remarkable if the antenna beam width is broad enough. This fact can be proven
from the exercise taken as follows: for the Chung-Li VHF radar the HPBW is 7.4 °, if the
horizontal wind speed is assumed to be 10 m/s, the beam broadening Doppler spectral width will
be 0.56 m/s calculated from equation (3), while the spectral width contributed from turbulent
fluctuations and gravity wave oscillations is less than 0.3 and 0.1 m/s during quiet conditions,
respectively (SATO and WOODMAN, 1982; CARTER et al., 1984). Therefore, because the beam
broadening effect is much larger than the turbulent and gravity wave effect contributed to the
observed Doppler spectral width, it is practicable for a broad antenna beam to measure the aspect
sensitivity in terms of beam broadening Doppler specmam for a vertically pointing radar beam. In
the following section an experiment of aspect sensitivity measurement, made by the Chung-Li
VHF radar, and the observed results are presented and discussed.

EXPERIMENT AND RESULTS

The data used here were observed at the Chung-Li VHF radar on April 23, 1986, 0723 -
0809 LT. The three antenna beams were tilted toward northeast, northwest, and zenith directions,
respectively. The pulse width was selected as 2 Its (300 meters range resolution), interpulse
period (IPP) was 500 gs and coherent integration time was 0.25 s. The altitude of observation
started at 1.8 km and 40 range gates were set. The FFT of 64 points was performed and 170
resulting raw spectra were averaged incoherently for the radar returns of each channel and each
range gate. The normalized averaged Doppler spectra are shown in Figure 4, plotted with the solid
curve. From the two oblique Doppler spectra, the mean horizontal wind velocity can be estimated
by use of the moment method for each range gate if the signal-to-noise ratio is high enough. The
profile of the horizontal mean speed measured is shown in Figure 5, plotted with the solid curve.
The dashed curve in Figure 5 is the rawinsonde wind observed at the Pan-Chiao station apart from
the Chung-Li VHF radar about 25 km northeast. Once the horizontal wind speed is evaluated, the
beam broadening spectrum will be determined exactly according to equation (3) if the antenna beam
pattern is assumed to be Gaussian shaped. The normalized beam broadening spectra are shown in
Figure 4, plotted with the dotted curve. The beam broadening spectra are not evaluated above
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is the horizontal mean wind velocity, O is the zenith point, L is the distance between O and point

B, which L = 8z, _ is the zenith angle of point B. The Doppler frequency shifts at points B and A
arising from the drifting effect are identical if U is constant.
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Figure 3. The schematic relationship between observed Doppler spectrum (solid curve), beam
broadening spectrum (dotted curve) and angular spectrum (dashed curve), where the relationship
between Doppler frequency shift, f, and zenith angle, O, is shown _n equation (1).
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range gate 30 because the signal-to-noise ratio is too low to calculate the accurate mean horizontal
wind velocity. Comparing the observed and theoretical beam broadening Doppler spectra, it is
obvious that the former are systematically narrower than the latter for vertical Doppler spectra,
whereas, for oblique Doppler spectra, the former are broader than or equal to the latter. These
phenomena can be seen more clearly from Figure 6 in which the abscissa is the beam broadening
spectral width and the ordinate is the observed Doppler spectral width. It is noticed that some
points distributed in panel (a) and panel (b) of Figure 6 (for oblique Doppler spectra) are deviated
much from the line with slope 1. It is because the signal-to-noise ratio at these altitudes is not high
enough so that the true Doppler spectral widths cannot be evaluated accurately from the observed
Doppler spectra. However, the data quality for vertical Doppler spectra is quite good, as referred
to Figure 4. Therefore, the aspect sensitivity can be estimated from the observed vertical Doppler
spectra and the theoretical beam broadening spectra according to the previous illustration in
equation (4). The measured aspect sensitivities at a specified altitude are shown in Figure 7 with
the open circles. It is evident from Figure 7 that, in general, the echo powers decrease at the rate of
0.3 to 1 dB/deg, and the levelling of the aspect sensitivity can also be observed at a certain altitude.
Specifically, there is no angular dependence of echo power at altitude 5.7 krn. These features can
be reconf'a'med from Figure 8, in which the profiles of echo power for the three antenna beams and
the generalized potential refractive index gradient, M, are presented. The aspect sensitivities at the
altitude marked with the arrows in Figure 8 have been shown in Figure 7. The definition of M is
(TATARSKII, 1961; VANZANDT et al., 1978)

M =-77.6 10--6,l_(---j-_) [1 (5)x - _"_InO/'dz lJ

where P is the atmospheric pressure (mb), T is the temperature (K), q is the specific humidity and
O is the potential temperature (°K). It is obvious that atmospheric stability is related to the value of
M 2, the higher the stability, the larger the value of M 2. From Figure 8 it is clear that the profiles of
echo power and M 2 are matched very well. This characteristic has been confirmed by many
scientific workers (GAGE et al., 1981; TATARSKII, 1961; GAGE and BALSLEY, 1980). The
correctness of the aspect sensitivity measured with the Chung-Li VHF radar by using the vertical
Doppler spectrum and beam broadening effect can be further proven if the echo power of the
oblique beam and vertical beam are compared. The echo power of the radar beam toward
northwest is not available for comparison in this study because of the contamination by the intense
cosmic noise from the Cygnus A radio star (PAN, 1987). After examining the echo power profdes
of the vertical and oblique (toward northeast) radar beams in Figure 8, it is apparent that there are
large aspect sensitivities existing in the atmosphere below 5.1 km and above 7.2 km with the echo
power difference of 10 to 15 dB and 5 to 10 dB, respectively. However, there are little power
differences (less than 2 dB) around the altitude 5.7 kin. The aspect sensitivities measured at the
specified altitude from the echo power profile of vertical and oblique beams are also plotted in
Figure 7 with the crosses. Noting that the zenith angle of the oblique radar beam is 17°, it implies
that the echo power of the oblique beam observed can be expected as the result of isotropic
turbulent scattering, that is, no angular dependence. Therefore, the echo power of the oblique
beam will be located at the levelling of the aspect sensitivity. From Figure 7 it is evident that the
aspect sensitivity measured from these two independent methods are consistent. It is concluded
that the method of aspect sensitivity measurement in terms of observed vertical Doppler spectrum
and beam broadening effect developed at Chung-Li is practicable and correct.

DISCUSSION AND CONCLUSION

There are many assumptions in the method of aspect sensitivity measurement introduced in
this study, such as the Gaussian antenna beam pattern, neglection of the wind shear, turbulent
fluctuation and gravity wave oscillation broadening effect in the observed vertical Doppler
spectrum. In general, the assumption of the Gaussian antenna pattern can be accepted if the
angular range concerned in a broad antenna beam is limited within the range -1-HPBW/2 measured
from the main beam axis, that is, + 4 ° for the Chung-Li radar. On the other hand, the wind shear
effect will be very small and can be neglected if the antenna beam is pointed vertically and the range
resolution is fine enough. The gravity wave effect can also be neglected if the time period for the
averaged Doppler spectral estimation is shorter than 5 minutes (HOCKING, 1986) or the
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atmospheric condition is very quiet (CARTER et al., 1984). As for the turbulent broadening
effect, the degree of its contribution to the vertical Doppler specwal width can be estimated from the
comparison between the width of the observed oblique Doppler spectrum and the beam broadening
spectrum, ff the former is larger than the latter, it implies that the turbulent broadening effect will
be very important and cannot be neglected. Under tlus situation, although the detailed structure of
the aspect sensitivity cannot be evaluated from the observed vertical Doppler spectrum, the
characteristic width of aspect sensitivity will be calculated from the information of beam
broadening spectral width, vertical and oblique observed Doppler spectral width (CHU, 1988).
However, if the observed oblique Doppler spectral width is equal or approximate to the vertical
one, it implies that the turbulent fluctuation will be so weak that the turbulent effect can be
neglected. From Figure 4 it is clear that the observed oblique spectral widths are approximate to
the beam broadening spectral width, that is, the turbulent effect can be neglected during this
observation. The gravity wave effect can be neglected also because there are no gravity waves
existing in this observation after examining the time series of radial wind fluctuation. Therefore,
because of no contamination from wind shear, turbulent and gravity wave effect, the result of
aspect sensitivity measurement shown in Figure 7 is the true one.

In general, the disadvantages of the traditional beam swinging method for aspect sensitivity
measurements are (1) the spatial fine structure of aspect sensitivity cannot be measured because of
the convolution effect with the antenna beam pattern; (2) the temporal resolution of aspect
sensitivity cannot be high enough because of the time consumed for the radar beam swing; (3) the
actual angular distribution of echo power cannot be measured because the zenith angle from which
the most echo power is returned is not the angle the radar beam pointed. Of course, these
disadvantages can be eliminated if the pencil-like narrow radar beam is used for observation.
Because of no beam swinging and convolution of the antenna beam pattern, the disadvantages
mentioned above will not exist in the measurement results of aspect sensitivity introduced in this
study. Therefore, the quality of aspect sensitivity measured from the broad radar beam pointed
vertically is better than the beam swinging method.

From the previous discussion, it is concluded that for a VHF radar with which the aspect
sensitivity cannot be measured by using the beam swinging method, the measurement methods in
terms of beam broadening effect on the vertically pointing radar beam will be applied if the antenna
beam is broad enough and the horizontal wind speed can be evaluated precisely.
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ASPECT SENSITIVITY MEASUREMENTS OF VHF BACKSCATI'ER MADE WITH THE

CHUNG-LI RADAR: PLAUSIBLE MECHANISMS 1

R. F. Woodman

Jicamarca Radio Observatory
Insfituto Geofisico del Peru

Lima, Peru

Y.-H. Chu

National Central University
Chung-Li, Taiwan, ROC

A new technique, using beam broadening effects, has been developed to measure the
aspect sensitivity of atmospheric clear-air VHF-radar echoes. It uses the relativity broad
antenna beam of the vertical pointing antenna of the new Chung-Li ST-radar (25°N, 120°E).
The aspect sensitivity measurement using this method is straightforward and free from
convolution effects introduced by the finite width of the antenna beam pattern. The observed
results agree very well with other measurements.

The authors propose a turbulent layer model to explain the aspect sensitivity of the
echoes. In this model, anisotropic turbulence is confined to a very thin (few meters) region at
the boundary of a turbulent layer. This region is responsible for the aspect sensitivity of the
echoes obtained from the vertical direction. The isotropic echoes obtained from the oblique
beam arise from the isotropic turbulence embedded in the center of the layer, with 30 to 300
meters in vertical extent. We show in an Appendix that the magnitude of the partial reflection
coefficient is much more sensitive to the shape, length scale and smoothness, than to the slope
of the refractive index prof'de. Therefore, the functional shape of the refractive index profile is
very important for estimating the reflection coefficient. Large errors can be made when
assuming, for simplicity, nonphysical profiles. For partial reflecting mechanisms to be
important, step-like discontinuities, conf'med within length scales of the order of meter, would
be required.

1In press. Radio Science, early 1989
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A Relation between Specular Reflection Echoes and Refractive

Index Gradient in the Troposphere and Lower Stratosphere

T. Tsuda (l), P. T. May (2), T. Sato (3),

S. I<ato (t) and S. FukaoO)

(1) Radio Atmospheric Science Center, Kyoto University
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(3) Department of Electrical Engineering, Kyoto University

1 INTRODUCTION

MST radars operated at VHF and UHF utilize a physical principle that radiowaves in

these frequency bands are scattered and�or reflected by fluctuations in the radio refrac-

tive index of the atmosphere. It is fairly widely accepted that for VHF radar observa-

tions isotropic turbulent scattering is dominant in the oblique directions, and reflection

from stratified layers becomes dominant in the vertical direction [Gage and Green, 1978;

Rfittger and Liu, 1978; Hocking and RSttger, 1983; Tsuda et al., 1986].

This study is concerned with a relation between reflection echoes observed from the

vertical direction in the troposphere and lower stratosphere with the MU radar and

refractive index gradient simultaneously measured by a radiosonde launched from the

MU radar site.

2 REFRACTIVE INDEX GRADIENT

The vertical gradient of poteatial refractive index M in the dry atmosphere, i.e. neglecting

humidity, is defined as:

M -77.6x10 -6pN2= ---- (1)
Tg

where p, T and 51 are the atmospheric pressure, temperature and Brunt-V_iis_il_i (buoy-

ancy) frequency, respectively [e.g., Gage et al., 1985]. Note that since p/T is proportional

to air density, M is l)roportional to N 2 and air density. Therefore, M generally decreases

with the scale height of air density (al)l)roximatcly 7 kin) in the stratosphcrc where the

background value of N 2 is roughly constant. Relative fluctuations of air density me of

an order of T'/To, where T' and To are the fluctuating and background components of
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temperature profile. Since T'/To < 1/100, the fine vertical structure of M is mainly
determined by the N 2 profile.

The received echo power for the Fresnel reflection is expressed as follows:

PtA2G2 2
po= _p (2)

where Pt, A, r, G and p are the transmitted power, radar wavelength, range, antenna

gain and reflection coefficient, respectively. The reflection coefficient is assumed to be
proportional to M 2 and the intensity of fluctuations with a vertical scale of half of the

radio wavelength E(2k) [VanZandt and Vincent, 1982: Gage et al., 1985], i.e.

p2 = CM2E(2k) (3)

where C is a constant which is determined by the radar wavelength and the height
resolution of the radar sampling volume.

On the other hand, for isotropic turbulent scattering the radar reflectivity r/ has a

relation expressed as
M 2

r/= e-_ (4)

where e is the eddy dissipation rate within a turbulent layer [Gage et aL, 198{)].
Considering (1) 1} becomes proportional to N2e in the dry atmosphere, while p_ for

l_'esnel reflection/scattering becomes proportional to N4E(2k). Thcreforc, these two
scattering/reflection mecha_fisms are characterized by proportionality to either N 2 or N 4

as well as the turbulence parameters.
For convenience we now define a normalized signal-to-noise ratio (SNR) in the vertical

direction S_ after compensating for the range-squared effect as follows:

P_R 2
so= -_(_) (5)

where, Pjv and i2 are the noise power aa_d the range in kin, respectively. The reflection

coefficient described in equation (3) becomes proportional to S,.

3 DESCRIPTION OF THE EXPERIMENT

The vertical echo power has been oversampled every 75 m at altitudes between 5.4-21

km with a height resolution of 150 m and a time resolution of about 74 s by the MU
radar (35°N, 136°E) in September 1986.

During the radar observations a radiosonde was launched fi'om the MU radar site,
which can1 sample temperature, pressure and humidity every one second (5 m resolution).

We have averaged these profiles over 30 m in order to reduce the quantization error and to
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obtain equally spaced points from the irregularly spaced original data points, and further
smoothed by using a running mean window over five adjacent points, which gives tile

temperature profile with the height resolution of 150 m similar to that for the MU radar
observations.

Although the tropopause was located at a_'ound 15 kin, the vertical temperature
gradient at 10-15 kin altitudes is relatively gradual, aad therefore, this altitude region

seems to be fairly stable than in the region below 10 km.

4 RESULTS AND DISCUSSION

Fig. 1 (a) shows M 2 (dashed line) and P_ (solid line) profiles measured between 10 and
20 kin, where M e is determined by using vertical spacings of 150 m for the calculation

of temperature gradients, and P. is averaged for 43 min. Peak values of M 2 range from
10 -17 - 10 -_s, and a typical vertical spacing of these peaks is 1-2 km in this height range.

The S, profile shows peaks with similar vertical spacings as those ill the M e profile

below about 15 km, and slightly smaller spacings above 15 kin. The ratio of S_ between

the peaks and valleys is about 20 and 10 dB below and above 15 km, respectively, which
is also consistent with the range of variation of M 2.

Overall agreement between the M e and P_ profiles below 14 km is excellent except

for differences in intensity at a valley about 11.8 km altitude, and a discrepancy of the
altitude of a valley near 13 kin.

At altitudes of 14-15 km, which correspond to the region just below the tropopause,
S,, is attenuated relative to M 2 by 5-10 dB more than other altitude regions. In the
height range fl'om 15 to 18 kin, S_ and M _ generally show similar height structures,

although the M 2 profile is smoother. Above 18 kin, S_ tends to decrease more rapidly
than M 2.

The ratio between S, and M e plotted in Fig. 1 (b) shows a variation ranging from -15

to 15 dB from the mean value. However, the large excursion from the mean mostly occurs
at valleys of S,, where estimation of echo power is less reliable than that at peaks. The

spatial variation of/tI e might also be the cause of the excursion, because the horizontal
distance between the MU radar and the radiosonde could become as large as several tens

kilometers at these altitudes. A full circle in Fig. 1 (b) corresponds to a determination
at a peak of S_ whose location is indicated by a short horizontal bar in Fig. 1 (a). The

mean value of the ratio at the peaks is 189.5 dB with a standard deviation of 2.4 dB
indicated _s straight vertical lines in Fig. 1 (b).

A linear regression or a cross correlation analysis between log M 2 and log S_ gives a

quantitative idea about the relation between these two profiles. Since the mea,surement
accuracy of ._,Ie does not seem to be affected by the intensity of M 2 itself, and on the
other hand, the deterlnination of S_ becomes worse when the SNR is small, we have

assumed log._l e as the independent variable, and log S, the dependent variable in the
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linear regression analysis plotted in Fig. 1 (c). The slope of the linearly fitted curve is
0.98 with a standard deviation of 0.1 for the range of M 2 larger than -183 dB. The cross

correlation value between M 2 and S_ for the entire range of variables is about 0.7 as
shown in Fig. 1 (d).

In summary, the measured M 2 profile agrees well with tile S_ down to the radar

height resolution of 150 m, indicating that ttle height structure of tile vertical echo power
with a resolution of 150 m is mainly determined by M 2, thus by (NS) 2. This implies

that in equation (3) M s varies much more than the factor E(2k). Unfortunately, we can

not determine the origin of the refractive index fluctuations with a scale of 3 m (half of
tile radar wavelength) from our observations. However, the linear relation between Sv
and M s suggests that the energy density of 3 m scale fluctuations E(2k) seems to be

distributed rather uniformly with height, although E(2k) is certainly another important
factor to determine the intensity of the reflection coefficient.

This study also suggests that intense peaks in the vertical echo power profiles, which
normally have vertical spacings ranging from several hundred meters to a few kilolneters,

represent the local enhancement of Brunt-V_isgl_i frequency probably induced by gravity
wave activities through their modification of the temperature field.
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The following formula is often quoted in the literature to evaluate the
reflectivity of a refractive index profile, n(z):

__ 1 dnR = -6" "-dT-ex_-/k,z) dz.

Also, it is commonly assumed for simplicity a constant slope profile, under the
impression that it is the slope what determines the reflectivity. Under this conditions,
or whenever an integrand, or its derivatives deviate from zero at the limits of
integration at + I./2, the limits introduce a discontinuity which can largely
overestimate the reflectivity. The difference between R= ( power received) of a
constant slope profile, evaluated in this form, and a error-function profile with a
characteristic slope of ten meters, is 2000 decibel. It is shown that the continuity
and smoothness of the profile is more important than the characteristic slope. An
error function profile needs a characteristic length as small as a meter or less, and
a difference of a fraction of a degree in temperature, to produce the reflectivities
observed.

lpublishcd as an abstract to "Aspect Sensitivity Measurements of VHF Backscatter made with
the Chung-Li Radar: Plausible Mechanisms." (Radio Science, early 1989).
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OF POLAR MESOSPHERE SUMMER ECHOES (PMSE_
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ABSTRACT:

Polar Mesosohere Summer Echoes Echoes detected on 224 MHZ are described with
particular emphasis on spectral features detected with high time and frequency
resolution. It is supposed that the particular fine-structure of these echoes
results from very localized and strong scattering regions or even partially
reflecting structures of the refractive index being o a sporadic or spread
nature,

INTRODUCTION

The multi-national campaign MAC/SZNE (Middle Atmosphere Coooeratlon/ Summer Zn
Northern Europe) to study the middle atmosphere was carried out in summer 1987
in northern Scandinavia, The particular purpose of this campaign was to inve-
stigate with rockets and ground-based methods the large-scale dynamics and
structure of the middle atmosphere as well as gravity waves and turbulence. The
EISCAT VHF radar was involved in the operations and almost 70 hours of obser-
vation time were provided by Germany, Norway, Sweden and the EISCAT Scientific
Association. It turned out that the EISCAT VHF radar contributed substantially
to this campaign, partlcu]arly enforced by the exciting detection of the new

category of lower ionospheric echoes on 224 MHz: The Rolar _esosphere summer

echoes, PMSE. The first observations of these echoes were described by HOPPE et
al. (1988) and ROTTGER et al. (1988). Similar echoes were earlier observed with

50-MHz radars in polar regions by ECKLUND and BALSLEY (1981) and CZECHOWSKY and
ROSTER (I985_. We discuss in th_s paper some typlcal features of the polar meso-

sphere summer echoes observed on 224 MHz, in particular their Doppler spectra

and the variability of the echo power.

EXPERIMENTAL SET-UP AND FIRST HIGH-RESOLUTION OBSERVATIONS

The Interesting outcome of the EISCAT observations durlng the MAC/SINE cam-
paign was the occurrence of the golar mesosphere summer echoes (PMSE), which
were observed with the EISCAT VHF Radar from altitudes between 80 and 90 km. The

standard GEN-11 program (13-baud Barker code with 1.05 km baud length, e.g.,
TURUNEN, 19867, which was originally deslgned for incoherent scatter observa-
tions, was applied in the beginning of the campaign. The EISCAT VHF system was
run with two klystrons at a total power of 2 MW and 8% duty cycle maklng use of
the full VHF antenna, which was pointed to the zenith. In Fig. I three real-time

graphic copies are displayed, which show the flrst observations of these strong

echoes (courtesy of C. Hall and U.P. Hoppe).

It was argued that these echoes, which were first described In the paper by
HOPPE et al. (1988), cannot be explained by the usual Incoherent-scatter echoes

from the D-reglon (e.g., MATHEWS, 1984). Coherent mesospherlc echoes should also
not be detectable at 224 MHz because electron density irregularities, resulting

from neutral turbulence, should not be present at the radar Bragg wavelength of
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EISCATVHFRadar SP-SI-GEN-I1-V

I

11oka 113 kal

Fig. I First real-time graphic display of polar mesosphere summer

echoes from altitudes between 80 km and 90 km (courtesy of C. Hall

and U.P. Hoppe).

67 cm (half the wavelength of the 224 MHZ radar). Following conventional theo-

r]es of turbulence scattering applied to the standard mesosphere-stratosphere-

troposphere MST-radars, such echoes should not even occur on th usual MeT radar

frequencies of 50 MHz (e.g., HOCKING, 1985). Explanations of possible scattering

and generation mechanisms are outlined in a paper by ROTTGER and LA HOZ (1989).

Since there were indications of very narrow spectral features which could not

be resolved with the originally applied radar program, a new high resolution

program was designed basing on the early pulse schemes used for mesosphere

studies. This program (SP-EI-MESO-V) allows a spectral resolution of 0.42 Hz in

contrast to the 10.7 Hz resolution of the other applied program GEN-11. It also

uses a 13-baud Barker code with 1.05 km altitude resolution and covers the

altitudes from 78.5 km to go.o km. The pulse-to-pulse modulation scheme was

applied to adapt for the long coherence times of these echoes and to resolve

their corresponding narrow spectral wldth. SinGe coherent integration was not

implemented at that time, a very long lnterpulse period of 18.7 ms had to be

used to achieve a long enough data interval (2.4 s) with 128 data points in

order to obtain the necessary resolution of 0.42 Hz. From these complex data the

autocorrelation functions (ACF) were computed on-line, and two ACFs were accu-

mulated and dumped every 5 seconds. The VHF transmitter was operated at the same

peak power of about 2 MW as during the GEN-11 operations. Due to the long inter-

pulse period, however, only a low duty cycle of 0.48_ resulted, yielding an

average power of 96 kW. The full antenna of 40m x 120m aperture was used with a

vertical beam. With 65_ antenna aperture efficiency, the peak power-aperture

product was 6 x 10 s Wm2. Operation with this particular program was carried out

over 22 hours on 5 days in the first half of July 1987.
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Because the PMSE were unusually strong we cannot exclude that occasionally
some receiver non-linearlty did occur. With the applied analysis scheme the

effect is that the maximum power would be underestimated and some sidebands

could be generated which would cause a fraction of the echo power to be spilled

into higher Doppler frequencies. The effect on the Doppler spectrum width should
not be noticeable in the present ana lysls procedure.

In the companion paper by ROTTGER et el. (1989) some characteristics of

gravity waves occurring in connection with the polar mesosphere summer echoes
(PMSE) observed with this radar program are described. In this paper we wi]l

concentrate on some peculiar features of high-time and high-frequency resolution

spectra, since it was Quite frequently noted that the spectra are very narrow,

sometimes bi- or multi-model and frequently quite changeable in tlme and helght.

FINE-STRUCTURE OF DOPPLER SPECTRA

The individual spectrograms shown in several figures of ROTTGER et el. (1989)

prove the variable spectral width. We noticed that the wldth can take values

differing by almost an order of magnitude. Relatlng the spectrum wldth tenta-
tively to turbulent fluctuatlons of the scattering structures we find varlations

from very weak r.m.s, fluctuating velocities of less than I ms -t up to Quite
severe fluctuations of about 10 ms -I . Some extreme examples of spectra are shown

in Figure 2. Note that in all our analvses we have subtracted the noise, and the

displays, thus, show only the signal amplitude or the power. The PMSE spectra in
Fig. 2 are centered in each case on the frequency bin with the maximum amplitude

Am. The value An = I0 corresponds to about 15 dB signal-to-noise ratio, We wlll

deduce the absolute signal power in e later chapter when we estimate the radar
reflectivity of the 224-MHZ PMSE. We already notlced from the signal peak at 85

km in Fig. I that the PMSE is much stronger than the incoherent scatter back-

ground in the D-region.

EISCAT VHF RADAR (224 XHz)

100

2JULY19B? Z=BS.gkm 9JULY19B? Z=E3Ekm

,.==zi ! iz1:29351,_=,_i i !_0=19_s

Frequency{Hz)

Fig. 2 Spectra of incoherent scatter signals (left-hand panel, after

HALL et el., 1987) and of coherent-scatter polar mesosphere summer
echoes measured with the EISCAT 224-MHz radar in TromsO, Norway. The

center panel shows the widest spectra and the right-hand panel the
narrowest spectra, which were found so far in PMSE analyses.
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Fig. 3 Time series of self-normalised Doppler spectra with time reso-
lution of 5 seconds. The number in the boxes gives the signal plus
noise amplitude in dB, which was used to normalise the spectra. The
spectra show the normalised linear smplltudes.

The widest spectral width observed during PMSE conditions, namely 10-15 Hz, is
much narrower than the width of 50-100 Hz of an incoherent scatter echo from 80-
90 km altitude. This is proved by the spectra shown on the left-hand side of
Fig. 2. Whereas the incoherent scatter spectra are of Lorentzian or Gaussian
shape, the PMSE spectra consist of an ensemble of several narrow-band spectra (2
July 1987) or even a single high-amplitude spike superimposed on a weaker end
wider spectral background (9 July 1987). These observations are consistent with
the hypothesis that fairly small and localized refractive index structures
coexist within a volume of 1 km in vertical and about 2 km in horizontal extent
(given by the beam width), which move with different differential velocity. This
also means that the structures causing the PNSE unlikely fill the scattering

volume homogeneously. The spiky structure of the spectra can be regarded to be
due to some kind of amplitude modulatlon whlch results from quickly growing and

decaying scattering structures. This is an indication that the scattering pro-
cess is intermittent and not statlonary (e.g., HOCKING, 1987). Under usual
conditions the latter sltuation should not occur for incoherent scatter or for

pure turbulence scatter.

In Fig. 3 we show a serles of spectra deduced from single data dumps with the
best achievable tlme resolution of 5 seconds. We clearly notice the separated
peaks. Note also that the spectral amplitudes are displayed and not the spectral
power in order not to suppress the wider and weak wings of the spectra. We

regard the occurrence of the spikes on the spectra not to represent the normal
statistical fluctuations rather than to be of some deterministic nature. This

assumption can be supported by the displays of self-normalized dynamic spectra,

which are shown in Figures 4a and 4b. These displays allow to trace single spec-
tral spikes as function of time and frequency. At 84.85 km we for instance

notice over some 30 seconds at the beginning of the display that a single very
narrow spike dominated the spectrum, which later splitted up into two or a few

spikes. One kilometer higher In the next range gate, the spectrum was split from

the beginning into two or more peaks of about equal amplitude. In thls range
gate some kind of braided structure characterised the spectrum. This means that

there were two distlnct reflectors or very narrow scattering layers which moved
radially with slightly different veloclty. The velocity difference must have

been changing gently within several ten seconds, resulting in a small variation
of the Doppler frequency of the spectral spikes which even could 3oin into one

narrow spike. This then results in some kind of braided structure of the Doppler

spectrum. The total amplitude of the slgnal in the correspondlng range gate Is
shown in the upper panel of the Figures 4a and 4b. We notice that there is no

obvious relation of the quite variable signal amplitude with the described fine-
scale features of the spectra. Thus, the scattering/reflection cross section did

not at all depend on these velocity variations.
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In Flg. 5 we show amore recent example of dynamic spectra which were obtained

wlth a different radar experiment. In the rlght-hand panels we again notice the

splitting of spectral peaks Into a bralded structure (although at larger time

scales) as well as a separation and a sudden jump in Doppler frequency. In the

spectra of the left-hand panels some ktnd of micro-jumps do occur. We have

explained the possible cause of these particular features In the companion paper

(ROTTGER et al., 1989).

The assumption that the refractive index structures, which cause the PMSE, are

fairly narrow ls supported by the spectra displayed In Fig. 6. These are series

of spectre from 3 adjacent range gates and we definitely notice very narrow

spectra in the centre range gate. Whereas these spectra are fairly persistent at

the beginning, a sudden jump occurs towards the end of the display. The lower

range gate shows almost no signal, whereas fatrly wlde and fluctuating spectra

occur in the upper range gate.

The observed short-term fine-structure would be smeared out when spectra are

averaged over 1 minute or so, which ls frequently done In several analyses. The

quasi-braided structure will also not show up In low-spectral-resolution experi-

ments, such as those with the incoherent scatter program GEN-11. It is also

assumed to be smeared out with wide-beam radars, wlth a beam width larger than

1-2 degree.
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Fig. 5 Selflnormallsed spectrograms of PMSE around 84 km and 85 km

observed with 300 m altitude resolution app]ytng complementary

coding (see details in La Hoz et el., 1989).
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Fig. 6 Amplitude of Doppler spectra

of 3 altitude gates at 83.80, 84.85
and 85.90 km measured wlth 10 s

time resolution on 6 July 1987
between 10:18 and 10:23 UT. The

noise level is subtracted from the

displays. It is noticeable that the

spectra exhibit completely differ-
ent characteristics in the altitude

gates separated by only 1.05 km.

We must assume that the quasi-braided structure in the spectra is determini-
stic and not due to random scatterers. The extremely narrow spectral spikes are
consistent with a fairly stable and only weekly turbulent reflectlvity struc-

ture. The possible explanation that the narrow spectra together wlth the sub-
stantially large echo amplitude are caused by Fresnel reflection from a thin

spreaded lamina of reflectivity structure could sound acceptable. Some simpli-

fied model can be proposed which assumes that the short-term (time scales of
seconds) quasi-periodic behaviour of Doppler spectral lines could be due to

focussing/defocussing or interference of ray paths originating from Fresnel
reflection from different locations of the refractive index surface which is

undulated by a wave disturbance. A relation of particular features of VHF radar

echoes, like power bursts and cat's eye structures in the reflectivlty profiles,

to wave disturbances or instabilities was suggested by KLOSTERMEYER and ROSTER
(1984) and REID et al. (1987). CZECHOWSKY et a]. (1988) have also found an
aspect sensitivity, which they assumed to be consistent w_th a reflection mecha-
nism. In the paper by ROTTGER and LA HOZ (1989) possible mechanisms will be
described, which could cause the steep gradients of reflectivlty, namely the
electron density variations, and which will be needed to explain the described
spectral features.

CONCLUSION

We have discussed in this paper some fine structures of PMSE, whlch we could

envisage to result from very localized and strong scattering regions or even
partially reflecting structures of the refractive index in the polar summer

mesosphere. These structures, which do not fill a volume of some I km vertlcal
and horizontal extent, are most likely corrugated or split into substructures

and, thus, cause the evident intermlttency of the PMSE. In analogy with iono-

spheric irregularities in the E- or F-region we may term the particular D-re-
gion/mesospheric irregularities, whlch cause the polar mesosphere summer echoes,

to be of a sporadic or spread nature. ROTTGER and LA HOZ (1989) will discuss
some possible geophysical mechanisms which could generate these structures.
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CHARACTERISTICS OF VIIF RADAR ECHO POWER IN THE TAIWAN AREA

Y. H. Chu 1, T. S. Hsu l, C. H. Liu 2, J. K. Chao 1, and J. ROttger 3

lDepartment of Atmospheric Physics, National Central University, Chung-Li, Taiwan, ROC

2Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801
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In this report the gradients of the generalized potential refractive index (denoted by M) over

the Taiwan area are analyzed. The definition of M is (OTrERSEN, 1969):

v .OlnO 155ooq,, _ ½ _)1
M = -77.6 x 10 .6 _ (---d-_) [1 + T tt _ln®/3z

(1)

dry term wet term

where P is the atmospheric pressure (mb), T is the temperature (°K), q is the specific humidity, O

is the potential temperature (°K) and z is the altitude. The terms in the brackets are called the dry
term and wet term, respectively, depending on the humidity contribution. It is found that over the
Taiwan area, in general, below 8 km the contribution of water vapor to M is larger than the dry air
by about 1 or 2 orders of magnitude, and above 8 km the humidity contribution to M vanishes as

shown in the example of Figure 1, in which the solid, dotted and dashed curves represent the

profiles of log (M2), wet term, and dry term, respectively.

From the echoing theory of MST radar (GAGE et al., 1985; GAGE and BALSLEY,
1980), it is obvious that no matter what the echo mechanism is, the echo powers are always

proportional to the values of M 2, that is

for reflection: Pr = e2.pt.Ae2.Ar.M2.F2(2k,z) / (16-z2-X 2) (2)

for scattering: Pr = e2-0.69.Xl/3.pt.Ae._r.M2oLo4/3 / (64-z 2) (3)

where e is the efficiency of the antenna and transmission line, Pr is the received echo power, Pt is

the transmitted power, Ae is the effective antenna area, 2L is the wavelength, Ar is the range

resolution, M is the gradient of the generalized potential refractive index, Lo is the outer scale of

the turbulent spectrum, F(2k,z) is related to the spectrum of vertical displacement, and z is the
altitude Therefore, from equations (2) and (3), it is apparent that the linear relationship between

Pr and M 2 can be expected if the logarithmic operations are taken for both sides of (2) and (3)

Figure 2 is the scatter diagrams of log(Pr.z 2) and log(M 2) for different months, where the range
correction to echo powers have been made to avoid the altitude bias From Figure 2 it is clear that

the linear correlation coefficient of log(Pr-z 2) and log(M 2) for every month is always between 0.5

to 0.6 and also the values of the correlation coefficient do not show the significant monthly

variations. Although the correlation between the echo power and M 2 is quite good, as shown in

Figure 1, however because the magnitude of M is dominated by the humidity contribution below 8

km over the Taiwan area, one must be very careful in using VHF radar echo power data to deduce
the atmospheric temperature profile as suggested by GAGE and GREEN (1982).

It seems from Figure 2 that the correlation between the echo power and M 2 is independent
of the weather condition. However, according to the following analysis, we found that it is not

true Figure 3 is the path of typhoon Wayne when it passed through the Taiwan area from August

20 to September 5, 1986, and Figure 4 shows the scatter diagrams of log(Pr.z 2) and log(M 2) for

the days during the typhoon invasion Note that the correlation between the echo power and M 2
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Path of TYphoon

WAYNE

1986

.

Figure 3. The path of typhoon Wayne passing through Taiwan island in the period August 20 to

September 5, 1986.
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Figure 4. The scatter diagrams of echo power and M 2 for the dates during the typhoon Wayne
period.
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are pretty good and the slopes of the regression lines arc between 0.3 to 0.7. Whereas Figure 5
shows the correlation between the echo power and M 2 in a weather condition of high pressure
system coverage over the Taiwan area. In this case the correlation coefficients are still high;
however, the slopes of the regression lines are different from the case of typhoon Wayne, the
values of the former are between 1.0 to 1.8. Therefore, it can bc concluded that different weather

conditions correspond to different slopes of the regression lines of echo power and M 2. As a
matter of fact, this result can be inferred theoretically from equations (2) and (3). For the echo
mechanism of the layer reflection, (2) can be rewritten as

log(Pr*z2)(dB)= alog(M2)+ R (4)

where a is the slope of this line and is equal to 1, and the value of R is dependent on the radar
parameters only. However, for the echo mechanism of the turbulent scattering, the result is
different. According to the theoretical work by WEINSTOCK (1978), Lo is proportional to the
potential temperature gradient, that is

Lo4/3 = c(dlnO/dz) -1 (5)

where c is the proportional constant. Substituting (5) and (1) into (3), and the assumption of dry
atmosphere is made, (3) can be rewritten as

log(Pr.z 2) = b log(M 2) + S (6)

where the value of b will be 0.5 and the magnitude of S is dependent on the radar parameters only.
From the above discussion it is obvious that for highly disturbed conditions, for example during
the typhoon period, the echo mechanism will be dominated by turbulent scattering and the slope of
the regression line between the echo power and M2 will be approximated to 0.5. However, for a
highly stable environment, for example during the period of high pressure system coverage, the
echo mechanism of the layer reflection cannot be neglected and the slope of that will be close to 1.
This conclusion has been eonftrrned by the observations shown in Figures 4 and 5.

The echo power profile variations of the Chung-Li VHF radar during the period of typhoon
Ellen are also studied. Figure 6 is the trajectory of this typhoon passing by the Taiwan area in the
time from October 11 to 19, 1986, and Figure 7 is the echo power profiles corresponding to the
dates before and after typhoon Ellen passed by. The upper and middle panels of Figure 7 are the
echo power profiles measured with obliqoely pointing antenna beams (17 ° zenith angle) toward
east and north, respectively, and the lowest panel is the profiles observed by vertically pointing
antenna beams. It is apparent that no matter what the pointing direction of the antenna beam is,
when typhoon Ellen was close to Taiwan island during the period from October 14 to 18, the
maximum detectable altitude where the Chung-Li VHF radar can reach will be raised up gradually
with time, as shown in Figure 7, marked with dashed line. However, as typhoon Ellen goes
away, the maximum detectable altitude will be lowered again.

In summary, the echo powers measured with the Chung-Li VHF radar are studied. The
correlation between the echo power and the gradient of the generalized potential refractive index for
one month's data is high, and con'elation coefficients seem to have no monthly variation. After
very carefully examining the relation between weather conditions and the slopes of the regression
line of the echo power and M 2, it is found that different weather conditions are responsible for the
different slopes of the regression line of the echo power and M 2. In fact, this result can also be
predicted theoretically from the analysis of the radar equation. The echo power profiles during the
typhoon period are also analyzed. The results show that the maximum height where the Chung-Li
VHF radar can reach will be higher than if there were no typhoon nearby.
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1o_
Chung-Li Radar _ Oct. 1986

!I i- w
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Figure 7. The time series of echo power prof'des measured with the Chung-Li VHF radar in
October 1986. The upper and middle panels represent the echo power profiles observed by

obliquely pointing antenna beams with 17°zenith angle toward east and north, respectively, and the
lowest panel is the echo power profiles measured with vertically pointing beam. The period
marked by the dashed line is the time of typhoon Ellen nearby Taiwan island as shown in Figure 6.
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ABSTRACT

It is assumed that VHF radar echoes consist of contributions from both isotropic
turbulences and anisotropic irregularities. Let the inphase and quadrature components of the radar
echo satisfy the central limit theorem, and their phases are randomly distributed symmetrically with
respect to zero. If the phase and the amplitude of the radar echo are independent and uncorrelated
to each other, then the probability density function of the amplitude of the radar echo is derived
using a theory of random variables. After some complicated calculations, the Rayleigh
distribution, the Rice distribution and the Hoyte distribution can be obtained as a special limit in
each case of the derived probability density function. It is further shown that the theoretical value
of the Nakagami M parameter of the radar echo can be derived as well. The magnitude of M
depends on the average value of the radar echo from the anisotropic irregularities It, and its
standard deviation _. Ifo 2 = ('f2 -1)l.t 2 then M = 1; ift_ 2 > (_/2 -1)l.t 2, then m < 1; and if 0r2 < (',_
-1)kt 2, then M > 1. Therefore, one has to be very careful when the Nakagami M parameter is used
to distinguish echo mechanisms.

INTRODUCTION

From the observation of aspect sensitivity, it is realized that the targets of the VHF radar
existing in the atmosphere consist of isotropic turbulences and anisotropic refractive index
irregularities. The characteristics of the former are straightforward; however, the latter are very
complicated and need more investigation. There are many modeled echo mechanisms proposed to
explain the relation between structures of VHF radar targets and the properties of VHF radar echo
signals. For example, isotropic turbulent scattering (BOOKER and GORDON, 1950); anisotropic
turbulent scattering (GAGE and BALSLEY, 19801.DOVIAK and Zmic, 1984); Fresnel reflection
(RO'VFGER and LIU, 1978); diffuse reflection 0RO'VI_ER, 1980) and Fresnel scattering (GAGE
et al., 1981). Different echo mechanisms correspond to the targets which cause the different
returns of VHF radar. Therefore, according to some criteria, it is possible to distinguish the echo
mechanisms from the analysis of the VHF radar echo signals. Statistical methods have been used
frequently to distinguish the VHF radar echo mechanism by many scientific workers (ROTFGER,
1980; SHEEN et al., 1985; HOCKING, 1987; KUO et al., 1987). Conventionally, the criteria of
the statistical method are such that if the probability density function (pd0 of the echo amplitude is
Rayleigh, or the Nakagami M parameter is equal to 1, the echo mechanism will be isotropic
turbulent scattering; if the pdf of the amplitude is Rice, or the M parameter is greater than 1, the
echo mechanism can be considered as the combination of partial reflection and isotropic turbulent
scattering; if the pdf of amplitude is Hoyte, or the value of the M parameter is less than 1, the echo
mechanism will be diffuse reflection or anisotropic turbulent scattering.

In this paper, we shall point out that the conventional criteria of statistical method in echo
mechanism discrimination are not so accurate, and the relation between pdf and the Nakagami M
parameter of VHF radar echo signals are also not straightforward. Under some assumptions, the
generalized pdf and theoretical Nakagami M parameter of amplitude for VHF radar echo signals
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have been derived. It is shown that the special cases of the generalized pfd derived in this paper
and the values of the Nakagami M parameter depend on both the mean value and the variance of the
returns from anisotropic irregularities.

DERIVATION OF AMPLITUDE PROBABILrI'Y DISTRIBUTION

From the measurement of aspect sensitivity with VHF radar it is reasonable to assume that
the echoes of VHF radar are composed of the signals from isotropic turbulent scattering and
returns from anisotropic irregularities. If the echoing processes of VHF radar are considered as
stochastic processes, the echo signal will then be treated as the random variable. Therefore, the
observed echo signal can be represented as the combination of two random variables, one is
responsible for the process of isotropic scattering and the other corresponds to the echoing process
of anisotropic irregularities, that is,

Eob s = Eiso + Eanis o (1)

where E means random variable. Let the numerical value of random variable Eobs be r, hence

r = A exp(iO) = x + iy = .Z aj exp(iq_j) (2)
J

where A and O are the amplitude and the phase of r, x and y are the inphase and quadrature
components of the observed echo signal, respectively; aj and q)j are the amplitude and phase of the
echo signal yielded from jth target in the radar volume, respectively. Assume that (a) the statistical
properties of x and y satisfy the central limit theorem, that is, the pdf of x and y can be described
by Gaussian distribution and be represented as

P(x) = N(m x, S2x) (3)

P(y) = N(my, S2y) (4)

where m x and my are the mean value of x and y, Sx2 and Sy 2 are the variance of x and y,
respectively; (b) q_iare randomly distributed but symmetrically with respect to zero; (c) a i and ePi
are independent ani:l uncorrelated to each other (d) the pdf of random variable of isotropic sc'attering
is Rayleigh distribution with variance 2S2 2, (e) the mean and variance of random variable Eanis9
are ffa and Sa2, respectively. After tedious and complicated calculation, the pdf of the echo signal
amplitude A is

P(A) = T * U • V (5)

where

T = A/(SNIS 2 + Ss2 ) (6)

U = exp(-A2/(2oS 2) - ffl2/(2oSa2) ) (7)

1 t ffI2S4-A2"S. 4 \ n S 2

V = n_O ;k2*S2Sa2(S2+Sa2) ) P2n ('_ ffa .)_ (8)ffl2S4 _ A2°Sa'I

Sx 2 = S 2 + Sa2 (9)

Sy = S (10)

mx= ffa (11)

and P2n(°) is the Legendre function of the first kind.
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and

From equation (5) to equation (8) some discussion can be made as follows:

(a) For the condition of _ = 0 hut Sa # 0, because

P2n(O) = (-1)n(1-3.5...(2n-1))/(2n-n!) (12)

= ,_ (x n. 1.3.5...(2n-1 ))/(n!) 2 (13)exp(x) IoCx)

where Io(x) is the m(xtified Bessel function of the zero order, in this ease, the pdf of amplitude will
become

where

P(A) = T'.U'.V' (14)

T'= AS(SqS2 + s.2 ) (15)

U' = exp(-A2/(2-S 2) + A2Sa2/(4"S 4 + 4S2"Sa2)) (16)

V' = Io(A2Sa2/(4.S 4 + 4S2.Sa2)) (17)

The pdf as shown in equations (14) to (17) is the so-called Hoyte distribution, or M distribution,

(b) For the conditions of ffa = 0 and Sa = 0, in this case from (14) to (17), it is easy to
show that the pdf of amplitude will be

P(A) = A/S 2 exp(-A2/(2•$2)) (I8)

ThisisthecxactRaylcighdistribution.

(c) Fortheconditionsof ffa# 0 butSa= 0,aftertediousand complicatedcalculationthe
pdfoftheamplitudewillbeobtainedas

P(A) = A/S2exp(-(A2 + ffa2)(2.S2))Io(A.Fn/S2) (19)

ThisistheRicedistribution.The curvesofpdfdescribedin(4)to(7)areplottedinFiguresIand
2 fordifferentffl,S and Sa values.

DERIVATION OF THEORETICAL NAKAGAMI M PARAMETER

The definitionofthcNakagami M parameteris

M = <A2>2/(<A4> - <A2> 2) (20)

where <*> means ensemble average. According to the same assumptions as mentioned in the last
section, it is easy to evaluate <A2> and <A4 > as follows:

<A2> = 2.S 2 + Sa2 + ffa2

<A4> = 8.S 4 + ga4 + 6.Sa2 ff12+ 3.S 4 + 8.$2Sa 2 + 8.S 2 _2

Substituting (21) and (22) into (20), and after arrangement, we have

M=I-I/(I+Q)

(21)

(22)

(23)
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Figure 1. The curves of generalized probability density function for different values of S (variance

of isotropic scatting signals), Sa (variance of mmms of anisotropic irregularities) and E! (mean
value of returns of anisotropic irregularities).

f S= 4 S=4
03 m=l i_=3

0.25_

_02

z s,_o,_,¢,:
O.t5

o
_. 0.1

0.05

2 4 6 B

i 0,2

o_ 0.15

m 0.1

0.05

2 4 6 IB 2 4 6 8

Amplitude

Figure 2. Same as Figure I.

2 4 6 B



125

where

Q = (2.S 2 + Sag + Ee12)2/((_2 + Sa2)2 _ 2. _4) (24)

Therefore, _ value of theM parameter depends on thedifference be t_,een Sa2 an_2('f-2-1)- _2,
that is, ffSa z = (q2-1)- _z M = 1; if S a2 > ('_2--1)* mz, M < 1; ifSa 2 < ('_12--1. _ , M > 1. The

relations between the M paran_ter, Saz and (q2-1)- _z are plotted in Figure 3.

SUMMARY

From the previous discussion, it is apparent that the conventional pdf, such as Rayleigh,
Rice, and Hoyte disffibution, are just the special limits of the generalized pdf as shown in
equations (4) to (7). Also, the quantitative relation beqveen the Naka_ami M parameter and the
characteristics of the VHF radar target, such as Sz, SaZ and m, is derived and shown in (23) and
(24). According to these results, it is clear that the value of the Nakagami M parameter cannot be
used alone as the tool of VHF radar echo mechanism identification because it is impossible to
distinguish the target characteristics from only one M value. Therefore, one has to be very careful
when the Nakagami M parameter is used to identify the VHF radar echo mechanism.
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In the summer of 1988 the EISCAT VHF radar made a series of measurements

to study the very strong echoes which occur at heights near the summer

mesopauseo The behaviour of the observed "layers" Is very dynamic; on

occasions the layers are seen to ascend or descend with vertical velocities of

up to 10 ms -1, and the layer thickness can vary from a few hundred metres to a

few kilOmetres. There are, however, some characteristics of the strong echoes

which are consistently reproduced from day to day. We present results which

show the typical strength and thickness of the layers, and the altitudes and

times at which layers are most likely to form.

During the summer months, when the mesopause is at Its coldest, very

strong backscatter echoes have frequently been observed by radars operating at

50MHz (e.g. Ecklund and Balsley, 1981; Czschowsky and Ruster, 1985). In 1987

the EISCAT VHF radar observed similar strong echoes at 224MHz (Hoppe st al.,

1988) which were not due to the usual incoherent backscatter since the

inferred electron concentration would be unrealistically large. The spectral

width of the scattered signal (0.5-15 Hz) was also much narrower than that

expected from Incoherent scatter (50-100 Hz) at these altitudes (Hall st el.,

1987)0 The large echo power could not be explained bY the traditional theory

for turbulent backscatter from the neutral atmosphere (e.g. Hocking, 1988),

since the half-wavelength of the VHF signal (0.87 m) Is far in the viscous

subrange. One explanation which has been proposed is that the echoes are due

to small-scale electron density fluctuations due to the presence of heavy

positive cluster lone in the cold summer mesosphere ( Kelley and Ulwlck, 1988;

Rottger et al., 1988;) although details of the process are still under

Investigation.

A special campaign to study the polar mssosphsre was carried out In the

Summer of 1988 at Tromso in Norway Involving the EISCAT and CUPRI radars. The

specific aim was to Investigate the very strong Polar Mesosphere Summer Echoes

(PMSEs) using multi-frequency studies of the same scattering volume.

Simultaneous echoes from the different radars have been studied by Rottger st

al. (1989) but In this paper we simply outline the main characteristics of the

PMSE layers as defined by the EISCAT VHF data.

The 1988 campaign was split Into two parts covering the periods from June

25th to July 8th and from August 2rid to August 12th. The first part Involved a

number of different experiments with observations mainly during the daytime;

the second part concentrated on measurements around midnight to coincide with
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simultaneous noctllucent cloud observatlons. A total of over 100 hours of VHF

radar observations were made covering the altitude region between 80-90 km.

New cofnplementary coding schemes were developed (La Hoz etal., 1989a) which

used coherent Integration and decoding In the correlator to allow a complete

time series of complex raw data to be recorded for subsequent post-processing

and analysis. These programs achieved the very good height resolution (150 m)

necessary to study the fine structure of PMSEs. A preliminary analysis of the

whole dataset has been performed to give one-minute postlntegratlons of

scattered power and vertical velocity for each range gate for each experiment.

This data has then been used to produce a statistical evaluation of the PMSE

layers In terms of their height, time and strength.

t5

b. 0
0

z n_
0

1 I I I

0 2 4 6 8 I0 I2 14 16 t8 20 22 24

UT

Figure 1. Times of mesospherlc observations by the EISCAT

VHF radar during the 1988 PMSE campaign.

The times at which the VHF radar was operated during the PMSE campaign Is

illustrated In Figure 1. It Is clear that most observations were made around

midday with relatively fewer at night. There are times of the day when no data

were recorded so that a complete study of the diurnal variation of PMSE layers

cannot be undertaken. However, between 09-17 UT and 22-04 UT the data are

suitable for a statistical study of the layers so that both daytime and

"nighttime" layers can be investigated.

In order to Illustrate the main features of a PMSE layer, a typical

example Is shown In Figure 2. The data is for July 1st 1988 when the PMSE3C

program was run providing 41 range gates from 80-92.5 km, each with 300 m

height resolution. Figure 2(a) Is a grey-scale contour plot showing the

strength of the returned power as a function of height and time. In this case

several PMSE layers are clearly seen at heights between 82 and 88 km where

extremely large echo powers are returned with the signal strength often more

than 20 dB above the background noise level.

In addition to the strength of the returned signal, the echoes are

characterised by their dynamic variability. This Is consistent with the

hypothesis of Rottger et al. (1988) who suggest that fairly small and

localised refractive Index structures exist within the scattering volume of

the radar. Such structures would not necessarily fill the scattering volume

homogeneously as they convsct horizontally through the beam, and very narrow,

localised structures (<< 1 km in extent) would be produced. This feature Is

Shown not only by the narrow width of some layers, but also by the extensive,

fine structure within the thicker layers. Sudden temporal changes are often

seen with layers appearing or disappearing within a few minutes; occasionally,

as shown at 10:45 UT, a relatively thick layer splits to form distinct,
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separate structures, which later merge together once again. Further examples

of the dynamic features in PMSE layers are discussed by La Hoz etal. (1989b).

m ABOVE 20.0

m 150.2o.0

n 100.15,0

60- 10.0

30- 6.0
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Figure 2, PMSE layers observed on July 1St 1988,

(a) Echo power, (b) Echo velocity.

Figure 2(b) shows the vertical velocity of the PMSE echoes on July 1st

1988, with positive velocities corresponding to upward flows. In order to

eliminate the poor estimates of velocity outside the layers themselves, the

velocity Is only plotted at points where the signal power Is at least 2 dB

above the background noise level. Wavelike structures In the echo velocity are

apparent In much of the data. Such quasi-periodic variations are a common

feature In PMSE layers and are Indicative of the Influence of gravity waves

(Williams etal., 1989). When such alnusoldal motion Is apparent there Is good

agreement between rapid changes In the height of the layer (e.g. 11:40-12:20

UT at 82km) and the corresPonding echo velocity. However, there are also

occasions (e.g. at 10 UT) when changes In the width or height of the layer do

not coincide with changes In velocity, It Is also Interesting to note that

although the velocities vary with time, the velocity profile Is relatively

constant and rarely shows the same degree of vertical structure as the layers

themselves.

One of the main alms of a statistical study of PMSE layers was to

determine the heights and times at which the layers are most likely to occur.

To Illustrate the results, Figure 3 contains a series of plots which show the

probability of occurrence of a layer as a percentage of the total number of

observations (see Figure 1) at each particular time and height. It should be

noted that the statistics are only really valid between 09-17 and 22-04 UT,

the two periods when a suitable number of observations were made. Occurrence

plots are shown for each of eight different heights between 81-88km with

layers defined as those with echo strengths greater than 30 dB, I.e. those for

which the echo power (signal+noise) Is more than 30dB above the background
noise level.
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Figure 3. Plots Showlng the percentage occurrence of PMSE echoes

at heights between 81 and 88 km.
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Looking first at the daytime observations, 09-17 UT, layers are most

commonly seen at 84 km with over 50_ probability, but occur with more than 40X

probability at all heights between 83-85 km. This Is in agreement with the

Idea that the layers are closely associated with the very cold summer

mesopause which Is also expected to occur at these heights (Phllbrlck et el.,

1984). An Interesting feature Is shown by the tendency of the occurrence

distribution to peak at about 12:30 UT for 82, 83 and 84 km, whereas the

distribution shows a small trough at the same time for 86, 87 and 88 km. This

reflects a slight change In the height at which layers tend to form around

midday: I.e. layers tend to form at greater heights before and after midday

than at midday Itself. This effect Is probably due to tidal variations In

either neutral velocity or, more likely, temperature, (Frltts st el., 1988)

but the observations are not co_lplete enough to allow a full Investigation of
the diurnal variations of PMSEs.

Figure 3 shows that despite the 24 hour Illumination of the mesosphere,

30 dB layers are much less likely to be seen during the "nighttime"; those

that do occur are found at heights nearer 86 km. Layers of 15-20 dB are more

frequent and occur with about 30_ probability at 86 km. The observations also

show a distinct asymmetry on either side of midnight; there are almost no 30

dB layers between 22-24 UT and very few 15 dB layers, but from 00-04 UT the

occurrence distributions Indicate a sharp Increase. Once again lack Of

observations (04-09 and 17-22 UT) preclude a complete study, but layers are

certainly more common poet--midnight rather than pre-mldnlght.
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The EISCAT PMSE campaign in the summer of 1988 has provided an extensive

database for use in the study of strong, coherent echoes from the mesosphere.

The data has shown that the strength of PMSE layers Is extremely variable,

with changes in height over a few hundred metres and changes in time over a

few minutes. A statistical survey of the VHF data has shown that the layers

occur near the mesopause with over 50% probability around midday and are most

likely to occur at a height of 84 km. Layers show evidence of tidal activity

In their tendency to form at slightly lower heights at 12:30 UT than at times

on either aide of this. The layers are weaker near midnight, and tend to occur

slightly higher at about 88 km; an asymmetry Is also observed with layers more

likely to form In the early morning hours.
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ABSTRACT

Echo parameters of MST radar signals, which are defined as the ratio between the layer
reflection contribution and the volume scattering contribution to the echo signals, are calculated for
SOUSY data between the heights of 1.8 km and 7.2 km at two different time periods under
different dynamical conditions, and also for Chung-Li data from both vertical and oblique beams.
Statistics of echo parameters and their correlation with echo power are analyzed. The results show
that the radarecho signal returned in the oblique beam is predominantly from turbulence scattering
contributions while there is a significant contribution from the layer's reflection in the vertical
beam. From cross correlation analysis between the time series of echo power and echo parameter,
we conclude that the variation of echo power is controlled by the variation of turbulence strength in
the atmosphere.

1. INTRODUCTION

It has been demonstrated that sensitive MST radars can be used to study the dynamics of
the atmosphere from tropospheric to mesospheric heights (W ..OODMAN and GUILLEN, 1974;
RASTOGI and BOWHILL, 1976; VANZANDT et al., 1977; ROTTGER and LIU, 1978; SHEEN
et al., 1985). Paxameterization of the echo signal's statistics can simplify our understanding of the
physical process in the atmosphere. Conventionally, the Nakagami m coefficient computed from
the signal's amplitude distribution has been one of the promising parameters. However, in our
previous report (KUO and LIU, 1988) of the _2 test on the signal statistics it was concluded that,
1) the fitting of the echo signal's quadrature components by normal distribution is significantly
better than the fitting of the signal's amplitudes by the Nakagami distribution. 2) The requirement
of stationarity conditions, time interval of the dataset had better be shorter than 2 minutes. So, the
echo parameter ? (KUO et al., 1987) calculated from the signal's quadrature components should be
more reliable than the Nakagami m coefficient.

In this report, we will investigate the statistical property of the echo parameter obtained
from SOUSY data and Chung-Li data. Its implication on dynamics will be discussed.

2. ECHO PARAMETER T AND ECHO POWER P

Let the field E be the superlaosition of the volume scattering fields Es and the layer's
reflection field E r, i.e.,

E=Es+Er=X+iY

Es = X s + i Ys

Er=Xr +iY r (I)

X = X r + X s

Y = Yr + Ys

where Xs and Ys are the quadrature comtxments of the field.
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The volume scattered field is characterized by its stochasticity and isotropy with statistical
properties described by the equations CKUO et al., 1987)

< Xs > = < Ys > = < Xs Ys > = 0

Ps=<lE 2,=2. 

where angle brackets denote _e ensemble average and Ps denotes the echo power contributed from
volume scattering. The layer s reflection is characterized by its coherency with statistical property
described by

< X r> =g_)

< Yr > = I'/_r)

< (Xr - I't_)) 2 > = < (Yr -' (0",2I-'y J >=0

. (rh2 . t. (r)_2
Pr= <1 _ 2 > = (r'x, _- _r,y

where Pr represents the contribution of the layer's reflection to echo power. In addition, the
scattering signal and reflection signal are uncorrelated

< XrXs > = < YrYs > = 0

so, from eqs (1) - (3) we obtain

P.x = <X > = < X r > = I.t(xr)

= y > _ .(r)
try <Y>=< r -,_y

2 (4)
O'2x= < (X - _)2 > Os

2 9
= < (y _ _y)2 > O_s(Iy

Then, it is straightforward to see that

P = Pr+ Ps (5)

Sincetheechoparameter%,isdefinedby (KUO etal..1987)

I.tx + l.ty

_,=E=

o ._ + o2y

the square of y is roughly equal m the ratio between the reflection power and the scattering power

= _ (6)
*s



133

3. DATA ANALYSIS

Examples of Chung-Li and SOUSY data were used for echo parameter analysis. The
Chung-Li data were taken by the Chung-Li VHF radar between 0708 LT and 0922 LT October 14,
1986, with time resolution of 0.25 s and height resolution of 300 m between 2.7 and 10.8 kin.
The radar was operated at 30 MW peak power and 0.66 kW average at the frequency of 52 MI-h
with one beam pointed obliquely at an angle of 17° tiffed toward east and another beam pointed
vertically. SOUSY data were taken with the Sounding System (SOUSY) VHF radar of the Max-
Planck-Institut f'fir Aeronomie in 1978 with time resolution of 1.03 s and height resolution of 0.15
Inn. The radar operated at 53.5 MHz, and it was pointed vertically with power beam width of 10 °.
Two separate sets of SOUSY data were selected for analysis on the basis of their difference in
environmental conditions (Table 1).

Table 1. SOUSY Data.

Data Set Start time (UT) End Time (UT) Tune Lasted
Month Day Time Month Day Time (hours)

T28 May 31 0407 May 31 1025 6.3

T35 June 2 1300 June 2 1925 6.4

Data set T28 was taken under clear sky conditions, while set T35 was taken during a time period
when a thunderstorm was developing near the radar site.

Each 128 consecutive complex datafrom each height were used as a sample group, its echo
parameter )' and echo power P were calculated for analysis. The time interval covered by each
sample group is approximately 1.1 minute for the Chung-Li data and 2.2 minutes for SOUSY data.

Figure 1 plots the echo parameters of the Chung-Li data from the oblique and vertical
beams at each height range. We can see that the echo parameters of the oblique beam are mostly
smaller than 0.3 in each height range, an indication that the echo signals are mostly from turbulence
scattering. On the other hand, the )' values of the vertical beam are significantly larger than that of
the oblique beam. This fact confirms the general belief that the layer reflection contribution to the
echo signal is much larger in the vertical beam than in the oblique beam. The contribution of the
layer reflection to the vertical beam is reconfnmed by the average power profile as shown in Figure
2, which shows that the echo power in the vertical beam is significantly higher than that in the
oblique beam at almost every height.

Figure 3 shows an example of the time variation (after smoothing) of _ and )' from the
height range between 3.45 km and 3.60 km of SOUSY data set T28 (Figure 3A) and T35 (Figure
3B). There exists strong evidence that the time series of "_/-P-'isnegatively correlated with the time
series of)'. Such negative correlation is found to exist in many height ranges as shown in Figure
4, which plots the cross correlation coefficients as a function of height. A simple physical meaning
for negative correlation between echo power P and echo parameter )' can be easily reduced from
equations (5) and (6). Namely, the time variation of echo power P is dominated by the
contribution of volume scattering. In other words, the time variation of turbuldnce strength
controls the variation of the echo power. When the correlation analysis between variable P and ),is
coupled with their time averages as functions of height as shown in Figures 5 and 6, we gain
further physical insight. As mentioned before, the data set T28 was taken under clear sky
conditions, while T35 was taken when a thunderstorm was developing near the radar site. The
thunderstorm will certainly increase the turbulence activity, hence will raise the echo power and
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lower the echo parameter. Figure 5 reveals that in the height ranges between 3.15 kin and 4.5 kin,
the mean echo power ofT35 is at least 15 dB higher than T28, meanwhile, Figure 6 shows that the
corresponding echo parameter of T35 is a factor of 5 lower than T28. This result is in agreement
with the result of the correlation anMysis. For height ranges higher than 5 km of both T28 and
T35, the echo parameter y is lower than 0.1 on the average (Figure 6), the echo power is low
(Figure 5) and the correlation coefficients are negligibly small (Figure 4). So, the signal statistics
is meaningful only when its echo power is significantly strong.

4. SUMMARIZATION

Our data analysis proves that the statistics of the echo parameter based on the signal's
quadrature components is meaningful. Echo parameter analysis of the signals returned from the
vertical and oblique beams confirms the general belief that signals returned from the oblique
direction contains comparatively little contribution from the layer's reflection. Cross correlation
analysis of echo power and echo parameter suggest that the variation of the echo power is
predominantly controlled by the variation of the turbulence strength in the air. By combining these
two reasonable results, it is fair to claim that the echo parameter y has delicate physical meaning
contained in its statistics.
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RADAR ECHO SIGNAL STATISTICS

ABSTRACT

Fu-Shong Kuo I and Shu-Ing Liu 2

IDepartment of Physics
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A X2 test was made on VHF radar signal statistics by the presumed theoretical
disuibution function. The goodness of fitting improves as the time intervals of the data sets
under test are shortened. Thus, the nonstationarity problem in signal statistics is reduced by
shortening the data sets. Both simulation and data analysis indicate that it is better to fit the
signal's quadrature components by normal distribution than to fit the signal's amplitudes by the
Nakagami distribution. As far as parameterization of radar echo signals is concerned, we
suggest that it is better to use the signal's quadrature components than to use the signal's
amplitudes.

1. INTRODUCTION

Signal statistics provide important information about scatterers. One of the promising
theories on signal statistics is the Nakagnmi theory from which the m coefficient of the
amplitude distribution of the radar echoes can be computed. It is expected that the m
coefficient will give a rough estimation of the ratio of contributions between turbulence
scattering and the layer's reflection. But, in many cases, the amplitude distribution of radar
echoes fails to follow the Nakagami distribution (SHEEN et al., 1985; KUO et al., 1987).
Sheen et al. explained their findings as due to the focusing and defocusing effects of the
signals returned from undulating moving layers; Kuo et al. summarized their results as due to
stochastic effects on the signal generated in the variable process. These effects make the signal
statistics nonstationary. Naturally, the stationary theory such as the Nakagami distribution is
not suitable to explain the nonstafionary data set

In order to have accurate signal statistics, we may either derive a nonstationary theory
to fit the data set, or make the data set as stationary as possible to meet the assumption of the
stationary theory. Because the Nakagami distribution is so eas}, to apply, it is desirous to use
the stationary data set for analysis. It is known that if the ttme interval of the data set is
shorter, its data statistics will be more stationary. However, if the time interval is too short
(hence the total numbe, of counts of the data set is too small), its statistics will also become too
poor to be meaningful. Requirements of stationarity put an upper limit, while requirements of
meaningful statistics put a lower limit, on the length of the data set. Such an issue will be
investigated in this report.

2. STATISTICAL MEANING OF THE X2 TEST ON SIGNAL DISTRIBUTION

The field E = X + IY of the radar returned signalresults from the superposition of a
coherent component (i.e., reflected from layer) on a scattered component, which is a sum of
the fields scattered from many different scattering targets. According to the Central Limit
Theorem, the quadrature components X and Y of field E asymptotically approach a normal

distribution (ISHIMARU, 1978; KUO et al., 1987), and the amplitude A = _X 2 + y2 should
approximately follow the Nakagami distribution, i.e.,
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p(A) = 2m2A2m-I m
r(m)<A2> m exp (- _ A 2)

where r is the gamma function and m is the Nakagami coefficient given by

<A2>2

m = <(A2._<A2>)2>

The conventionalmethod ofjudginghow wellthe data setisfittinga theoretical

distributionfunctionisthe so-calledX2 test,or goodness-of-fittest;X2 isa measure of

discrepancybetweenthehistogramofthedatasetand thetheoreticaldistributionfunction

k

X2 = I__ (°bscrvc_cted)2

The meaning of the values of X2 is rather statistical than deterministic. If the data set really
comes from the presumed theoretical distribution function, then the occurrence probability of a

X2 value should follow the X2 distribution

f(x2 ) = 1 e_X2/2(X2) _ -1
2v/2r(v/2)

where v = k - 7 isthedegreeof freedom,7 isthe number of restrictionsimposed on the

distributionfunction.For practicalapplications,anotherparameter,calledthe P value,is

referencedastheprobability thatX2 > X2, i.e.,

P = X! f(x2) dx2
(1)

O_P_I

The variable P is an alternative measure of the goodness-of-fit. Equation (1) implies

dP = - f(x 2) dx 2 (2)

Again,themeaning oftheP valueisstillstatistical,not deterministic.Ifthedatasettruly
comes from thepresumed theoreticaldistribution,thenitsP valuemust followadistribution
functiong(P)suchthat

Ig(P)dPl -- I f(z 2) dx21

then
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g(P) = I f(x2p)dz21dP I = I (3)

So, the P value is uniformly distributed between 0 and 1. If there is only one data set, it will
be meaningless to make a goodness-of-fit test because even if the data set truly comes from the

presumed theoretical distribution, its P value has equal probability to be anywhere between 0
and 1. Only when we have many data sets from the same class, the goodness-of-fit test will
become meaningful. Namely, if there exist many data sets with their P values uniformly
distributed between 0 and l, then we can assure that these data indeed come from the presumed
thcoredcal distribution.

The above point of view on the X 2 test can be better understood by the following

simulations. We generate 200 data sets with each set consisting of N elements, [(xi, Yi), i =

1,2,3,...N], each element (xi,Yi) are random variates of Gaussian distributions, i.e.,

x i E N(I.tx,O x)

Yi e N(l.ty,Oy)

the amplitude of each element is given by

_/ 2 2
Ai = xi + Y i

These data sets simulate the time series of stationary VHF radar echo signals. The x and y

distributions are X 2 tested by normal distribution, and the A distributions are X 2 tested by the

Nakagami distribution with parameters gx, Ox, gy, oy and m determined directly from each
data set. Figure 1 presents the distributions of P v-alue- s of each 200 data sets with prescribed

parameters l.tx, Ox, gy, Oy and N. We can see that the P value of 2(2 test on the x and y

distributions consistently satisfy uniform distribution between 0 and 1. But for the 2(i test on

A distributions, the percentage of small P values (representing bad fit to the Nakagami

distribution) is slightly higher than expected as the ratio Ox/Oy between the variances of the

quadrature components deviates away from 1, we see that the i-ate of bad fit to the Nakagami

distribution increases significantly. The Nakagami theory on signal statistics is acceptable only
when the variances of the two quadrature components are approximately equal.

3. 2(2 TEST OF VHF RADAR ECHOES

As an application of the 2(2 test, we have analyzed the radar echo signals taken by the

SOUSY VHF radar between 2138 UT May 30 and 0359 UT May 31 of 1978. The data under
analysis has a time resolution of 1.03 seconds and a height resolution of 0.15 km between 2.1

km and 7.2 km. For each height range the time series consists of 22215 elements. To do the

X 2 test, the time series of each height range is divided into many subsets with an equal number

of consecutive elements. Table 1 presents the choice of the data divisions.

The procedure of analysis is exactly the same as in the previous simulation, namely, the

histograms of the quadrature components are X 2 tested by normal distribution while the

amplitude distribution of the signals is X 2 tested by the Nakagami distribution. Examples of

the P values of each subset are shown in Figure 2. If we set our confidence level at 95%, then
all the subsets with P values less than 0.05 are regarded as unacceptable by the presumed
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(A) l.tx = py = 0; Ox = oy = 1.0

(B) Px = 1.0; py = 0; o x = Oy = 1.0

(c) _ = Io; p_ = o; o= =% = ].o

(D) P-x -- l'Ly -- 0; O x --- 1.2; Oy -- 1.0

(E)p_= py= 0;ox= 1.5;Oy = 1.0

(F) Px = Py = 0; Ox = 2; Oy = 1.0
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theory. Two important points can be summarized from Figure 2. First, as the time period of
each subset decreases, the rejection rate decreases, and the P values tend more and more to
uniform distribution; second, rejection rate of the amplitude distribution is always higher than
that of the distribution of the quadrature components. The first point proves that the
nonstationarity of the signal statistics improves by shortening the time interval of the datasets,
The second point indicates that the fitting between the histogram of the signal's quadrature
components and normal distribution is much better than the fitting between the signal's
amplitude disuibution and the Nakagami distribution.

Table I

# of elements N time period for
class for each subset # of subsets each subset (rain)

A 256 86 4.4
B 128 173 2.2
C 64 347 1.1

Figure 3 shows the rejection rates at different height ranges. It is natural to see that the
effect of nonstationarity on the signal statistics is different at different heights, since our
atmosphere is far from uniform.

4. CONCLUSION

VHF radar echo signals returned from the atmosphere are a stochastic process. The
Central Limit Theorem insists that each quadrature component of the signal should be normally
distributed, and the amplitude should approximately follow the Nakagami distribution. The
goodness-of-fit by SOUSY data supports this theory, under the condition that the time periods
of the data sets are short enough to be stationary. But analysis also indicates that the Nakagami
distribution is not as well fitted by the signal's amplitude, as normal distribution is by the
signal's quadrature components. Therefore, as far as parameterization of echo signal is
concerned, statistics of signal's quadrature components is more reliable than the amplitude's
statistics.

The nonstationarity problem of signal statistics can be reduced by shortening the time
interval of data sets. In many cases of SOUSY data, stationarity condition indicates that the
data sets should not be longer than 1 minute.
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DIRECT COMPARISON BETWEEN IN S1TU AND RADAR MEASUREMENTS OF
TEMPERATURE FLUCTUATION SPECTRA: A PUZZLING RESULT

F. Dalaudier l, M. Crochet 2, and C. Sidi!
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Investigations of temperature fluctuation spectra of atmospheric turbulence were
performed simultaneously by remote sensing and in situ measurements. A balloon-borne
instrumented gondola measured temperature and velocity fluctuations up to an altitude of 18
kin. Spectral analysis of these data led to one-dimensional spectra. Simultaneously, the
nearby stratosphere troposphere radar "Provence" obtained vertical profiles of reflectivity for
both vertical and oblique (15 °) line of sight and for various range resolutions. According to the
classical interpretation, the radar echoes result from the three-dimensional spectrum of
refractive index fluctuations, and its aspect sensitivity reflects the spectrum anisotropy at the
haft radar wavelength. We thus separately reconstructed the reflectivity profiles for the two
Lines of sight. For the oblique one, the in situ observed spectral level of temperature
fluctuations (assumed isotropic) was converted into radar reflectivity. For the vertical
measurements, a theoretical "universal" level was used, along with an isotropic conversion
formula. Comparison of the reconstructed reflectivity profdes with the observed one proves to
be very puzzling. For oblique measurements, where the reconstruction process uses only the
widely accepted hypothesis, the observed profiles are poorly reproduced. By contrast, for
vertical measurements, the proposed model leads to a good reconstruction of the shape of the
reflectivity profiles. In both cases, the predicted level is always strongly overeslimated. The
discussion concludes that the discrepancy is real and calls for further studies of this problem.

Since a paper with the same authors and title is accepted for publication in Radio
Science, the interested reader is referred to DALAUDIER et al. (1989).
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ABSTRACT

In this paper, the echoes of meteor trails and returns of mesospheric intermittent
irregularities observed by the Chung-Li radar are presented, and the characteristics of meteor trail
echoes are analyzed. It is found that the lifetime of the observed meteor trails is less than one
second and the altitude range where they occur is above 70 km and centered at about 88 km.
During the periods of meteor showers Cygnus and Lyra, the occurrence rate of meteor trails was
from 3.5 events/hour to 12.5 events/hour. Additionally, by using the SAD method, the
mesospheric horizontal wind can be evaluated from the returns of mesospheric intermittent
irregularities. The magnitude of the wind speed at 72 km on a special observation was 11.2 m/s.
The scale size of the mesospheric intermittent structures (or patches) deduced from the horizontal
wind speed and duration of these intermittent irregularities is about 300 to 400 meters. These
features are similar to the results of other observations.

INTRODUCTION

Originally, the Chung-Li VHF radar was designed as an ST radar. The value of the power-
aperture product of this radar is only about 10 WM orders of magnitude (the characteristics of the
radar are listed in Table 1). Therefore it seemed impossible to make mesospheric observations;
however, after carefully investigating the echo signals coming from mesospheric heights, we
found that the Chung-Li VHF radar indeed has the ability to make mesospheric observations. In
this paper, we shall present some mesospheric observation results made recently, including the
statistical analysis of meteor trail echoes and an estimation of mesospheric winds from the returns
of refractive index irregularities in terms of the spaced antenna drift (SAD) method.

RADAR PARAMETERS AND OPERATION MODE FOR MESOSPHERIC OBSERVATIONS

During the mesospheric experiment, the radar parameters were chosen especially; otherwise
there would have been no returns from the mesosphere. In this study, the pulse width was 16 p.s,
and the interpulse period (IPP) was set as I000 Its. The peak transmitted power for each module
was about 40 kW (hence the total average power was only 2 kW). The coherent integration time
was 0.25 s, and 40 range gates were taken starting at 3 kin. The three antenna beams all pointed
vertically to avoid receiving sidelobe signals.

There were seven special observations used for this study. The dates and durati6n of these
observations are listed in Table 2, and, for convenience, each observation is marked with a capital
letter. It must be noted that observation A was during the period of the Cygnus meteor shower and
the observations from C to G were during the period of the Lyra meteor shower. Therefore, by
using these data, it is reasonable to infer the mesospheric returns coming from the refractive index
irregularities, and also the echoes of meteor trails can be studied since the Chung-Li VHF radar has
the ability to receive these signals. In the following sections, the mesospheric returns observed
either from meteor trails or from refractive index irregularities, will be presented and also some
preliminary results of the mesospheric study will be shown.
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Table 1. The Characteristics of the Chung-Li VHF Radar.

Location
Frequency
Wavelength
Peak transmitter power
(for each module)
Pulse width
Maximum duty cycle
Antenna

Type
HPBW
Steerability

Total geometrical area

Chung-Li, Taiwan (25°N, 121°E)
52.2 MHz
5.77 m

60 kW
1 - 16p.s
2%

3 square arrays of Yagi (8x8)
7°
Vertical and North, East, South,
West with 17° zenith angle
3x1600 m 2

Table 2. The Dates and Durations of the Seven
Spectral Observations Used for the Mesospheric
Study With the Chung-Li VHF Radar.
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OBSERVATIONS OF METEOR TRAILS

It is well known that when a meteor fails into the atmosphere ionization will occur because
of the friction effect between the ambient atmosphere and the meteor itself. Therefore, the free
electrons existing in the thermal and ionized meteor path (or trail) will change the properties of the
atmospheric refractive index. According to electromagnetic wave propagation theory
,, ATARSKII, 1961; ISHIMARU, 1978), variations in the refractive index can be treated as radar
targets and will scatter or reflect incident electromagnetic waves, depending on the structure of the
refractive index variations. Figure 1 is one of the records of echo signals coming from meteor trails
during the period of the Lyra meteor shower. It is obvious that in the three minutes three meteor
events occurred at altitudes 69.3 kin, 91 kin, and 98 kin, respectively. The lifetimes of meteor trail
signals are always less than 1 s (note that the time resolution of the echo signals is 0.25 s); this can
be further illustrated from Figure 2. Because meteor trail echoes appear not only as spikes in the
records with relative low time resolution, they also occur in all three channels at the same altitude
and time; therefore, it is easy to use statistical algorithms to pick up the meteor trail signals from the
background noise. After collecting many correct meteor trail events, some statistical analyses may
be made. Figure 3 is the occurrence rate of meteor events measured with the Chung-Li radar. It is
clear from this plot that during the period of the Lyra meteor shower, the mean occurrence rate of
meteor events is about 7 per hour, however, the daily variation in the occurrence rate is quite large,
and during non-meteor shower periods the occurrence rate is relatively low (only 1.6 events/hour).
Figure 4 is a histogram of the altitudes where meteor trails are produced. From this figure we can
see that the lowest height where they may occur is 70 kin, and the most likely altitude of
occurrence is about 90 kin. These results are quite agreeable with other observations (DAVIS,
1965; AVERY et al., 1983; WANG et ah, 1988).

MESOSPEHRIC OBSERVATIONS

Although the power-aperture product of the Chung-Li VHF radar is very low (only about
10 WM), the echoes coming from some mesospheric refractive index irregularities can still be
observed and analyzed. Figure 5 is the time series of amplitude variation of this kind of echo
signals which occurred at 71.1 km. From this record it is apparent that there are five mesospheric
refractive index irregularities passing through the radar volume, and the duration of these
irregularities in the radar volume is about 30 to 40 seconds. The dynamic Doppler spectra of these
mesospheric echo signals are represented in Figure 6. From the time variation of mean Doppler
frequencies and the consistency of the Doppler spectral shapes, it is reasonable to infer that the
structure of these refractive index irregularities will be "patch-like" or "blob-like" as suggested by
RO'I_GER et al (1979). As for the horizontal scale sizes of these irregularities, they will be
estimated later. In general, the mean echo power of these mesospheric returns are larger than the
background noise level by 5 dB, 4 dB and 2 dB for antennas 1, 2, and 3, respectively. This is
shown in Figure 7 for the signals of antenna 1. The right panels in Figure 7 are the averaged
Doppler spectra corresponding to the different altitudes. Because the Chung-Li VHF radar has
three square spaced antennas with a pyramidal arrangement as shown in Figure 8, it is possible to
evaluate the mesospheric mean wind in terms of the so-called SAD method. Figure 9 is the cross
correlation function of the echo signals which have been smoothed beforehand. From this plot it is
easy to determine the time lags between each pair of signals. According to these time lags and the
distances of the spaced antennas, the mean wind speed and the duration of irregularities, it can be
estimated that the horizontal dimensions of the patch-like or blob-like irregularities are about 300 to
400 meters.

SUMMARY

From this report, it is confirmed that mesospheric observations can be made using the
Chung-Li VHF radar. Some preliminary results have been presented.
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Figure 5. The records of the amplitude variations of the echoes coming from mesospheric
refractive index irregularities.
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Figure 6. The temporal variation of the Doppler spectra corresponding to the data as shown in
Figure 5.
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Figure 7. The echo power profile (left panel)
and the corresponding averaged Doppler
spectra with each altitude (right panel) for the
data of antenna 1.
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VERTICALLY PROPAGATING FEATURES IN MF RADAR SIGNAL STRENGTH

C.E. Meek and A.H. Manson

Institute of Space and Atmospheric Studies

University of Saskatchewan, Saskatoon, Canada

Abstract: Aquisition of professionally designed coherent receivers at the

Saskatoon (52°N, 107°W) MF radar (2.219 _z, 20 _sec pulse: 3 Km resol-

ution) allows reliable determination of signal strength height and time

profiles. The height variation in time (5 min resolution) of lock peaks

in the signal-height profiles is compared with similar statistics for

verticaul Doppler velocity, horizonatal wind, wind shear etc. An apparent

resolution of i Km is obtained from the 3 Km spaced data by parabolic fit.

INTRODUCTION

The data are from the new spaced antenna coherent wind system described

elsewhere in these proceedings. Horizontal wind and pattern parameters (by

"Full CorTelation Analysis", FCA), "verZioa1" Doppler (from the mean auto-

correlation phase slope at zero lag) and angle of am-rival parameters (not

used here) are available with 5 min resolution - depending on noise level

and success or otherwise of the analyses.

DATA

For each 5 min record in a day, local peaks in height profiles of the

various paramters are sought when data exist for 3 adjacent heights. A

parabolic fit determines the height to i Km resolution. All peaks are used,

regardless of their "strength". To avoid a painful re-write job, an exist-

ing printer display format was used: the 288 possible times are squeezed

into 256 boxes. This produces a very compact format. Figure i shows 2i days

of peak signal strength data. Vertical tics are spaced 12 Km (I pixel/Km),

and horizontal tics 3 hr apaz%(approximately 1 pixel per 5 min). Interest-

ing features can be seen in the upper half of the plot, but except at night

these have an additional virtual height component caused by changes in

underlying ionization. The E-region echo is an obvious case. Thus the dis-

cussion in this paper will be restricted to the lower half of the height
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Figure i. Heights of local peaks in signal (_V) vs. height profiles

for 21 days: i frame per day (0000-2359 UT). Local noon

and the height scale are marked on the top left frame.
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range (below 94 Kin).

In general when apparent motions are seen, they are downwards at

speeds of the order of tidal phase propagation (1-2 Km/hr). There are some

upward motions as well (e.g. day 226) but the continuity of data is not

as good - and these may be due to layers forming at successively greater

heights.

Non-tidal causes, such as changes in electron density (N(h) ) grad-

ients due to solar radiation or particle influx may combine with short

period gravity waves or turbulence to produce slow height variations of

the peak signals. For this reason, specific comparisons with features in

the neutral wind are of necessity somewhat tentative, and purely Used on

similarity of height and vertical speed.

DETAIL FOR TWO SELECTED DAYS

Additional parameters are shown for days 225 (Figure 2) and 226

(Figure 3). The signal peaks are reproduced from Figure 1 along with the

upward Doppler (VZ), total horizontal speed (VTR), vertical velocity shear

(VSHR= magnitude of velocity vector difference), northward (VN), eastward

(VE), southward(-VN), and westward (-VE) wind components, and fading speed

in the moving diffraction pattern (-TC: that is, a peak represents local

faster fading).

DISCUSSION

Day 225 signal (Figure 2) shows downward motion from _85 to 79 Km over

the last 5 hr in the plot (_ 1 Km/hr). This occurs approximately 3 Km below

the height of a similar feature in VTR (the total wind speed) - although

the slope is smaller, maybe 0.5 Km/hr. On other summer data (not shown)

which have these slowly descending "layers", the peak signal occurs at the

same height or just below the peak speed.

A harmonic analysis of L_ hrs of data (day 225-226 UT) is shown in

Figure 4. The diurnal component is expected to be inaccurate, if not act-

ually spurious, below _85 Km because of the reduced data at night for these

heights; but taking it at face value, the diurnal tide phase slope ( 16 Km

vertical wavelength below 85 Kin, 0.6 Km/hr) seems to be the closest to the

VTR slope, while that of the semi-diurnal (36 Km wavelength, 1.5 Km/hr)
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is close to the signal slope.

The VZ parameter shows downward phase speeds of the same order, but

a vertical wavelength of _12 Km. The height velocity shear, VSHR, shows no

upwa/_/downward propagation, and this is the normal finding for all the

(summer) data examined. The fading speed (-TC) closely reproduces the fea-

tures seen in VTR. (Over the long term these latter two paramters tend to

be positively correlated in the FCA used on the spaced antenna data anyway

it is not known whether this is an analysis effect or a physical re-

lation: but pattern scales - not shown- are similarly related to VTR in

the coherent FCA. )

The horizontal wind components also show a _12 Km vertical wavelength,

but the downward speeds vary between "propagating" features.

Day 226 shows an apparent upward motion from _ 70 to 82 Km over the

last 9 Dr, although it is difficult to be certain that the eye is not being

led by different layers. It also exhibits some wavelike oscillations. The

lowest VZ trace is the only other parameter with similar upward motion.

Near the end of the day, the VZ traces are spaced by _ 6 Km.

CONCLUSIONS

Quantitative work needs to be done to explain these data. For ex-

ample, non-linear interaction between the 12 and 24 hr components can pro-

duce an 8 hr component with a shol-ter wavelength than either, and a 24 hr

component with upward phase propagation The monthly spectra (not shown)

have hints of an 8 hr component at low heights with a clear peak at E-reg-

ion. Another complication may be multiple tidal modes caused by interaction

with the 48 hr components, which is the strongest of the three. The sudden

height changes in the 24 hr amplitude and phase indicate the presence of

several modes. However it is not clear why signal strength would react to

a single tidal component of the wind, and not the total speed or shear.

The VZ, on the other hand, is liable to be greater for shorter wave

motions, and these traces might be explained by the presence of an 8 hr,

or less, wave, although their slope suggests much longer periods.

These connections are all very tentative because influence on the

signal by N(h) gradients was not considered.
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SEMI-DIURNAL VARIATIONS IN THE TIME SCALE OF

TURBULENCE-LIKE IRREGULARITIES NEAR THE ANTARCTIC

SUMMER MESOPAUSE

G.J. Fraser and Usman Khan

Physics Department,

University of Canterbury, Christchurch 1, New Zealand

ABSTRACT

Measurements from the MF SA-mode radar at Scott Base (78S, 167E) include

an estimate of the autocorrelation time scale (T0.5) of the scatterers, corrected for

advection by the mean wind. Summer observations (December 1983) show a semi-

diurnal variation of T0.s. At heights of 87 to 95 km the minimum values of T0.s occur

when the zonal component of the semi-diurnal tide is at its westward maximum. If

it is assumed that decreasing values of To.5 are associated with increasing turbulence

then these results axe consistent with those of BALSLEY eg al. (1983) who found that

enhanced turbulence is generated in summer by low-frequency gravity waves and tidal

components above the polar mesopause.

INTRODUCTION

Since HOUGHTON (1978) pointed out the importance of gravity waves in the

overall transport of heat and momentum in the middle atmosphere there have been

a number of theoretical and modelling studies of the way in which gravity waves in-

fluence the large-scale circulation. There have also been observational studies, some

on quite small time and spate scales, of gravity wave breaking. FRITTS et al. (1988)

observed gravity wave breaking at one site (Poker Flat), with a time resolution of 15

minutes, on two days in summer. Their study supported previous work at the same

site by BALSLEY et al. (1983) who concluded from 22 months' observations that

their radar echoes from the Arctic summer mesosphere and lower thermosphere were

mainly produced by unstable low (comparable with tidal) frequency gravity waves.

The observations discussed below are also from the high-latitude summer mesosphere

and lower thermosphere, but from the Antarctic and on a time scale of one month.

OBSERVATIONS

The full correlation analysis (e.g. BRIGGS, 1984) of observations from SA mode

radars estimates a parameter, T0.s, which is the time scale of random changes in the

echoes after removing fluctuations due to advection of the scattering volume through

the radar beam. There is a simple relationship between T0.s (measured with a co-

herent radar) and turbulence parameters such as the energy dissipation rate, if the

scattering volume is filled with isotropic turbulence. However factors such as the

anisotropic nature of atmospheric irregularities and the finite radar beam width ne-

cessitate caution (HOCKING, 1983) in using T0.s as a quantitative measure of atmo-

spheric turbulence.
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The Scott Base observations discussed here were made with incoherent radar re-

ceivers. Consequently the receiver output spectrum is not the linear superposition of

the Doppler-shifted signals from individual scatterers but is the result of intermodula-

tion between the individual Doppler signals. This results in a broadening of the power

spectrum and a narrowing of its Fourier transform, the autocorrelation function.

Notwithstanding the above limitations it is reasonable to assume that an increase

in atmospheric turbulence results in a decrease in the value of T0.5 calculated from
incoherent receiver data.

In a preliminary investigation KHAN (1988) found a semi-diurnal variation of

T0.5 in observations from the prototype MF SA-mode radar (on a wavelength of

100 m) at Scott Base (78S). Details of the radar and its successor have been given

by FRASER (1988). Further analysis showed that this seml-diurnal variation is most

apparent in summer and the observations for December 1983 presented below show

that there is a close relationship between T0.5 and the semi-diurnal tide.

Observations of the zonal and meridional wind components and of T0.5 for the

whole month were sorted into 24 one-hourly intervals. Planetary and gravity wave

contributions thus appear as a random variation about the 24 one-hourly means.

These monthly mean diurnal variations for an altitude of 95 km are shown in Figure

1. It can be seen that decreasing values of T0.s occur when the zonal wind component

has its maximum westward excursion. The intensity of turbulence is thus a maximum

with a maximum westward wind but a minimum with a maximum eastward wind of

comparable speed.
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Figure l(a). Mean diurnal variation in T0.5 at Scott

Base (78S) for December 1983. The standard deviation

is 0.5s. (b) Mean diurnal variation in zonal (U) and

merldional (V) wind components. The sample standard

deviation of each point, due to non-tidal (planetary

and gravity wave) components is 20 ms -1. The

mean winds are included (U = - 6.1 ms -1,

V = + 7.6 ms-i).
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DISCUSSION

In their observations of gravity wave saturation FRITTS et aL (1988) found that

maximum turbulence occurred at heights where the temperature gradient was most

negative and where the perturbation velocity was in the direction of wave propaga-

tion. The Scott Base results therdore suggest that the source d instability is a west-

ward travelling gravity wave. The direction of propagation and the periodicity of ,,,12

hours imply that the source is the semi-diurnal tide.

Figure 2 shows the phase and amplitude of the zonal and meridional seml-diurnal

tidal components together with the zonal and merldional mean winds. There were

only data for 9 or less of the hourly intervals below 83 km so that the tidal compo-

nents could not be calculated. There were 16 hours of data at 83 kin and 23 or 24

hours of data at 85 km and above. The model results of FORBES and GILLETTE

(1982) in Figure 3(a) show a similar amplitude structure, a similar vertical wave-

length (25-30 kin) above 90 km and also a phase discontinuity at 85-90 km. There

is however a phase difference of about 3 hours in the zonal component between the
model and the observations.
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Figure 2. Mean zonal and mefidionM winds, and sere;-
diurnal tide at Scott Base for December 1983.

The phase slope between 89 and 97 km corresponds

to a vertical wavelength of 30 kin.
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Figure 4 shows a "tidal" plot for T0.5. The phase of the zonal semi-diurnal tide

from Figure 2 is also included. The relationship between T0.5 mad the zonal wind

at 95 kin, shown in Figure 1, is apparent at all heights between 87 mad 95 km (it

should be noted that the effective transmitter pulse width is 6 km FWHP). The tidal

phases are times of maximum positive excursion so the closeness of the T0.s phase

and the zonal phase confirms that a maximum eastward zonal component is associ-

ated with a maximum in T0.5 and a corresponding minimum in the amount of turbu-

lence. Assuming that the tidal phase discontinuity between 85 and 90 km indicates

the mesopause, the Scott Base observations are in good agreement with those from

Poker Flat (BALSLEY ef al., 1983; FRITTS et al., 1988). Both Arctic and Antarc-

tic observations suggest that turbulence is induced by low-frequency gravity waves or

tides near and above the polar summer mesopause.

Figure 5 is a similar comparison for the diurnal component. There is not the sim-

ilarity between the variations of the zonal diurnal tide and T0.5 as there is for the

semi-diurnal tide. The diurnal wind amplitude is comparable with the semi-diurnal

amplitude but both the observed and modeUed (Figure 2b) diurnal phase gradients

show an evanescent mode. There is some structure in the T0.s "tide", although the

non-linearity of wave breaking and the indirect relationship between T0.s and turbu-

lence may lead to some interaction between the 12- and 24-hour components.
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CONCLUSIONS

The observations from Scott Base in December 1983 show the existence of turbu-

lence near and above the polar summer mesosphere similar to that observed at Poker

Flat. Increased turbulence is frequency detected by the increased scattering of radar

signals, as in the observations of BALSLEY et ol., (1983). Further work is planned to

compare the scattered signal power with the winds and T0._, and to study the transi-
tion to and from solstice conditions.
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ABSTRACT

Ouring a campaign to study polar mesosphere summer echoes (PMSE-88) the EISCAT

UHF and VHF radars and the CUPRI VHF radar were operated in Tromsb in summer

1988. For the first time the EISCAT UHF radar detected coherent echoes from the

mesosphere. Their relation to the echoes recorded simultaneously with the CUPRI

radar is studied and some possible origins of the scattering process of the

polar mesosphere summer echoes observed at 49.9 MHZ and 933 MHz are outlined.

INTRODUCTION

A special campaign for studying polar mesosphere summer echoes (PMSE) was car-

ried out in summer 1988 in Tromsb/Norway. The EISCAT UHF (933 MHz) and VHF (224

MHz) radars and the CUPRI (46.9 MHzl radar were operated at the same site to

allow multi-frequency studles of the same atmospheric volume at the same time.

In addition to first direct comparisons of simultaneous VHF and UHF radar

observations of the summer polar mesosphere we present here the first observa-

tions of polar mesosphere summer echoes {PMSE) at the UHF frequency 933 MHz,

which cannot be due to conventional incoherent scatter. Polar mesosphere summer

echoes are usually observed by VHF radars (Ecklund and Balsley, 1981, Czechowsky

et el., 1985, Hoppe et al., 1988) and are due to backscatter or partlal reflec-

tion from fluctuations or gradients of the radio refractive index in the meso-

sphere. The mechanism which generates the necessary variations of the refractive

index is so far not established. These PMSE are usually orders of magnitude

stronger and have a much longer coherence time than the incoherent scatter

echoes from the D-region of the ionosphere. We will use here the term "coherent

echoes" for echoes which have a much longer coherence time than the incoherent

scatter echoes. The coherent echoes thus can only be suitably analyzed by means

of data taking in the pulse-to-pulse radar operation mode (e.g., Rbttger, 1989).

The observations of PMSE at 933 MHz are compared with slmultaneous 46.9 MHz

observations, where the incoherent scatter echo is negliglbly weak. The coherent

933-MHz echoes occur around 85 km altitude and were more than an order of magni-

tude stronger than the concurrently existing incoherent scatter echoes. The

spectra of PMSE are much narrower than those of the latter. The 933-MHz PI4SE

occurred in short bursts of maximum several mlnutes duration and were related to

simultaneous increases of the 46.9-MHz echo strength. It is noted that these

observations were during a magnetic storm when auroral partlcle preclpltatlon

enhanced the D-region electron density. It is also noted that wavelike vertica)

velocity variations with amplltudes above 10 m/s were observed around times when

strong PMSE occurred at both 46.9 MHz and 933 MHz. It is likely that the strong
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enhancements of PMSE, which usually are detected by VHF radars and now were seen
also at UHF, are related to strong vertical updrafts, but addltlonally need

large electron density and gradients to create the enhanced echo strength.

We recognize that the 933 MHZ echoes, Itke the 46.9 MHz echoes, are not caused
by incoherent scatter. We have to invoke other mechanisms, such as for instance
turbulence-induced scatter by extension of the electron gas inertial subrange in
the presence of cluster ions as suggested by Kelley et el. t1987). We argue that
also strongly enhanced electron density gradients with unusually short scale
lengths caused by small-scale patching of heavy cluster ions or some yet unknown
instability mechanism can be responsible for the strong polar mesosphere summer
echoes {PMSE).

EXPERIMENTS

The EISCAT UHF radar was operated for some periods during the campaign PMSE-
88, which was carried out in Tromso/Norway between 25 June and 8 August 1988 to
study particular features of PMSE. This radar operates in the 933-MHz band with
a pulse peak power of about 1.5 MW and a parabolic dish antenna with 48 dB gain,
corresponding to a half-power beam width of 0.6 degree. The standard EISCAT D-
region incoherent scatter program GEN-11 was applled (Turunen, 1986) and the UHF

system was operated in the monostatic mode with the antenna direction fixed to
the vertical direction. Thls program applies a special pulse-to-pulse modulatlon

scheme with a 13-baud Barker code and 1.05 km range resolution. Autocorrelation

functions with 22 lags and 2.222 ms lag spacing are computed on-line and after
integration over 10 sac dumped to tape. The peak power-aperture product of the
EISCAT UHF radar in the GEN-11 mode is estimated to be 9 109 W.mz. An introduc-

tory description of the EISCAT UHF radar system applied in MST radar Investiga-
tions can be found in ROttger et el. (1983).

The Cornell University Portable Radar Interferometer CUPRI (Providakes et al.,
1983) was brought to Troms6 for the PMSE-88 campaign and operated at 46.9 MHz.
A 50m by 50m coaxlal colltnear (coco) antenna array was used for transmission
and reception in the vertical beam mode. Additionally a N-S and a W-E baseline
interferometer receiving antenna system consisting 2 sets of 4 Yagis were set
up. The standard mode of CUPRI was to operate with the full coco antenna and a
10 _s pulse length, corresponding to 1.5 km altitude resolution. The peak power-
aperture product of the CUPRI system in TromsO is estimated to be 3.5-107 W-m2.
The operation of the CUPRI system was frequently simultaneous with the EISCAT
224-MHz operation. These comparisons as well as the interferometer results will
be published elsewhere. Here we will describe results from a simultaneous opera-
tion of CUPRI and the EISCAT UHF radar, since they show for the first ttme polar
mesosphere summer echoes at 933 MHz, which occurred simultaneously with 46.9-MHz
echoes recorded by CUPRI.

OBSERVATIONS

In Fig. 1 we show so-called RTgraph (real-time-graphics) plots of the EISCAT
UHF radar operation, recorded close to local midnight on 1 July 1988. In these
graphs the estimate of signal power Is displayed as function of range. At 22:57
UT the power profile 3ust shows the usual increase due to increase of the inco-
herent backscetter power in the D-region. We already had noticed earlier during
that evening some hints of a notch in the profile and sometimes even a very
small increase in echo power around 85 km altitude. At 22:58 UT suddenly a sig-
nificant increase in signal power in the altitude gate 85.75 km occurred, and we
were able to detect similar or even much stronger events of thls kind in the
following hours. The D-region Ionization was fairly enhanced during the observ-
ing period due to strong particle precipitation which occurred during an ongoing
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Ftgure 1. Real-_irne Dower profile displays of echoes from the D.-region
and lower E-region, measured _t_h Che EZSGAT UHF radar. The upper
_anels show _he usual Droftles and _he touer panels shou proftles
wl_h an enhanced echo from abou_ 85 kin altitude. These profiles
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magneticstorm. This enhanced the signal-to-noise ratio of the incoherent back-
scatter echo and thus allows us to obtain relevant Information on the D-region
electron density• However, the occasionally occurring coherent echoes would mask
the _sual incoherent echoes and then the electron density could no longer be
deduced• During the simultaneous operation of the CUPRI radar slmllar features
of echo variation were already noted In real-time, but some form of the PHSE
were present most of the time for CUPRI•

Ttme series of signal power In certain altltude gates of the EZSCAT UHF radar
(84•75 km) and the CUPRI radar (84.5 km) are displayed In Fig. 2. A somewhat
arbitrary dashed ltnets drawn to lndlcate above which signal level the EISCAl
echoes are assumed to be coherent echoes. The criterion used for this purpose ts
that an echo enhancement dld occur In only one or two altltude gates, since It
ls un]tkely to see an increase In incoherent scatter echo power only In such a
narrow altitude range. Signal levels below this dashed Ilne, thUS, can be regar-
ded as being predominantly due to incoherent scatter. A detatled study of the
spectra of these different echoes ts necessary, however, and needs to be done
subsequently, to obtain a better estimate where the separation line between the
"coherent" and "Incoherent" echoes should be drawn. A preliminary comparison of
the coherent echoes detected by CUPRI and by EISCAT thus shou]d be confined only
to the times when the EISCAT echoes are in excess of this tentatively drawn
line. We notice some correlation of these "coherent" PHSE on both frequencies. A
more obvious correlation Is evident when we compare the complete time series. We
note that thls is due to the fact that the potential refractive lnOex gradient,
which determines the scatter cross section of VHF radar echoes, In the meso-
sphere ts very strongly dependent on the electron denslty and the electron

denslty gradient. This means that most of the time the echoes on 933 MHz end
those on 46.9 HHz result from different scattering processes, but are related to
each other because of their dependence on the electron denslty.

1/2 July 1988
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Figure 2. lime series of power received in the range gate closest to
85 km wlth the EISCAT UHF radar (933 MHz) and the CUPRI VHF radar
(46.9 MHz). ;he dashed line Indicates the assumed limit of incohe-
rent scatter for the UHF radar. The upper curve shows the magne-
tometer record of the H-component of the Earth's magnettc field tn
TromsO (courtesy of Auroral Observatory, TromsO). The difference of
tick marks on the left-hand ordlnate corresponds to 100 nT for the

H-component, 15 dB for CUPRI end for EISCAT, respectively.
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we also have included in Flg. 2 the records of the H-component of the Earth's
magnetic field measured In Tromsb, slnce a posslble relationship of magnetic
field variations and PMSE strength was suggested by R1shbeth etal. (1988). In
the time series shown In Fig. 2 we do not see any betalled correlatlon between
the magnetometer and the radar records, and thus cannot immediately support this
suggestion. We, however, have to note that the lack of a strict correlation
could be due to the difference of the volumes over which the irregularities,
causing the radar signals, and the electro-3et current variations, causlng the
magnetic field variations, have to be averaged.

In Flg. 3 we present severs1 proflles of UHF radar echo power which in most
cases (except when these strong PMSE and thetr code-sidelobes are present) are a
good estimate of the electron denslty. The maxlmum of 15 dB corresponds to a
signal-to-noise ratlo of 100 _, and this is calibrated to correspond to an
electron density No _ 3-10 _o m-_ and a volume reflectlvlty _ = 5-10 -is m-_. The
minimum value of 0 dB corresponds to a signal-to-noise ratio of 3 _, lle
1.9.10 D m-_ and 5 = 1.10 -9 m-1 respectively. These estimates are preliminary and
are uncertain by about 20 Z. The maximum volume reflectivtty of the peak polar
mesosphere summer echo observed on 933 NHz at about 15 dB relative scale is
about a factor of 25 smaller than the maximum volume reflectlvlty observed in

1987 with the EISCAT VHF radar (ROttger etal., 1988). The system noise tempera-

ture of the EISCAT UHF radar Is at about 100 K, this means that the peak effec-
tlve temperature of a 933-MHz PMSE is about 100 K, too (SNR = 100 t). Defining

an effective signal temperature as the ratto of the effective signal temperature
and the power-aperture product allows us to compare measurements made at differ-
ent radars. Taking the EISCAT UHF radar parameters, we obtain an effective
signal temperature of 1-10 -8 K per W.m2 on 933 MHz. The peak PMSE of CUPRI was
about 30 dB, corresponding to 5-106 K, when assuming a system temperature esti-
mate of 5000 K. With CUPRI's peak power-aperture product of 3.5-107 W-m2 we
obtain an effective signal temperature of 0.14 K per W-m2 on 48.9 MHz. This
means that the reflectivities on both frequencies are about seven orders of
magnitude different.

There are some instances when the CUPRI echo shows peaks at altitudes of an
increased electron density gradient. However, the relation is by far not con-
clustve. More detailed analysis ls necessary to ftnd out how the CUPRI signal
strength depends on the gradient of electron denslty. We then have also to take
into account in the further interpretations that the altitude resolution of both
radars of some kilometer may not be sufflclent and that the CUPRI beam is about

ten times wider than the EISCAT beam. The echoes seen by CUPRI are thus an aver-
age over a much larger horizontal area than those of the EISCAT radar, which
reduces the correlation of the echo variations and does not facilitate the ana-

lysis. It could be presumad that the interferometer analysis of the CUPRI data

may ameliorate this horizontal averaging somewhat.

In Fig. 4 height-time-intensity plots are shown of the EISCAT 933-MHz radar
signal power and the vertical velocity. We notice in the upper panel the dist-
inct variability of the echo power demonstrating the enhancements of the elec-
tron density throughout all of the D-regton (occasionally down to 72 km) due to
particle precipitation. We also notice the further enhancements due to PMSE,
which are confined to a narrow altitude region around 85 km. Very noticeable is
also the depression of echo power, which occurred around the same altitudes
before the PMSE did arise. This power byte-out may partially be explainable as a
code-stdelobe effect, which Is caused by the way the noise subtraction is done
in the applied EISCAT radar program and which we w111 investigate further.
Particularly the power depreciation, which was observed below the strong PMSE is
likely resulting from such a sldelobe. It is to be noted in this context, how-
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ever, that Ulwlck et al. (1988) measured with rockets deep electron density

byte-outs and fluctuations in the polar summer mesosphere whlch compared well
wlth simultaneous measurements of PMSE wlth the Poker Flat MST VHF radar. Such

measurements were also carried out during the MAC/SINE campaign in sumter 1987

by comparing the rocket electron density proflles with echo power profiles

measured with the SOUSY VHF radar and the EISCAT VHF radar. These comparisons

also showed a fatr agreement (Kelley et el., 1989). We therefore have indica-

tions that the EISCAT UHF radar, in the times when there was no obvious PHSE on

933 HHz and the code-stdelobe effect was small, measured the same Kind of elec-

tron density byte-outs as the rockets did.
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in the lower two panels of Ftg. 4 the upward and downward velocity components
measured with the EISCAT 933-MHz radar are shown. We see periodicities of 10 to
15 minutes in the vertical velocity. The velocity amplitude apparently peaks
around 85-88 km, with a large amplitude of some 10 ms-1 . Above thls altitude
much shorter velocity periods are noted, whlch also appear more random than
those lower down. It looks 11ke that the PHSE occur preferably when the velocity
is dtrected upward. Williams et al. (1989) and R_ttger and La Hoz (1989) dlscuss
and interpret these observations and thelr relatton to atmospheric gravity waves
in the mesopause region.

A sample set of Ooppler spectra for these 933-HHz PHSE ls shown in Fig. 5.
These spectra are averaged over only 10 seconds, but separated in ttme by 2
minutes. We see the periodic variation of the Doppler shift and the narrowness
of the spectra. The spectral wldth ls partly caused by the varying Doppler shift
during the integration period. In any case, tt is very evident that these spec-
tra are much narrower as well as stronger than the spectra of the incoherent
scatter signal. The 1attar for instance can be c]early seen In the lowest alti-
tude gate (82.6 km). We therefore find support that these 933-MHz strong and
coherent echoes must result from a different mechanism than the conventional
incoherent scatter mechanism. The spectra of the 933-HHz PMSE are so narrow that
we cannot verify any enhancement of turbulence which would be necessary to
explain these echoes to result from conventional turbulence scatter. We thus
need another mechanism to explain the PNSE.
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Figure 5. Spectra of UHF radar echoes, showing the strong coherent
slgnal tnarrow spectrum) and the weak and wide incoherent scatter
signals tn the other range gates. The dB-values denote the peak
power of the spectrs, which is used tor single spectrum normaliza-
tion. The spectra are averages over 10 seconds and d_splay the
frequency range between ±225 Hz.
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INTERPRETATION

In a paper by R_ttger and La Hoz (1989) so_ possibilities for the cause of
these polar mesosphere summer echoes and the refractive index irregularities are
discussed in some more detail. Here we will briefly summarize some of these
possibilities.

Kelley et al. (1987) have noted that the presence of heavy ion clusters, which
do occur in the cold polar mesopause, could result in a reduction of the diffu-
sion coefficient although there is not yet a clear theoretical nor experimental
basis for this. The reduction of the diffusion could yield electron density
fluctuations at spatial scales which are much smaller than those of fluctuations
in neutral air turbulence, and could thus explain the enhanced backscatter cross
sections or reflectlon coefficients observed wlth the VHF and UHF radars. The

deviations from the fluctuatlon spectrum of neutral turbulence can be expressed
by the Schmidt number S, which is given by the ratio of the molecular diffusion

coefficient v of the neutral air molecules and the molecular diffusion coeffi-
cient D of the electrons, which give rlse to the scattering process. This means,

if D is small in the presence of heavy ions, the Scl_nidt number is large and the
backscatter cross section increases at smaller radar wavelengths. The formation
of heavy lons is temperature dependent, i.e. the colder the environment the
greater is the likelihood for formation of these heavy ions.

We have not yet analyzed the width of the 933-MHz spectra to search for the
narrowing effect of the incoherent scatter spectrum reported by Collls st al.
(1988) and Turunen et al. (1988) and Interpreted by Kelley et al. to be an
indicator for the presence of heavy positive tons and the suggested increase in
Schmtdt number. We on the other hand would like to add here a word of caution

resulting from our observations of the coherent, i.e. non-incoherent scatter,
polar mesosphere summer echoes detected on 224 MHz as well as on 933 HHz. It
could not be excluded that the reported narrowing of the spectra is nothing else
than the superposition of a (weak) coherent echo on top of the Incoherent scat-

ter echo. It is known that the mean temperatures in the polar mesopause in
summer can be as low as 120 Kelvin and that therefore the chance for the forma-

tion of heavy cluster ions is large, but any conclusion on the enhancement of
the Schmidt number must still be taken with great care.

It is also known that gravity waves with large velocity amplitudes are obser-

ved in the mesosphere. Williams et al. (1989) and have shown observed enhanced
vertical velocities of I0 mls and a relation to PHSE amplitudes was apparent.
Although this is not a very common effect, those observations are very inter-

esting, and would help us to understand one of the mechanisms behind the PMSE.
We can also note this effect in the displays of Fig. 4.

The velocity magnitude increases gently with some periodicity up to about 85
km altitude and then reduces to almost zero velocity within a few kilometers or

so. Above this altitude almost no clear periodic oscillations of the vertical
velocity are noticeable. During the time of upward directed velocity coherent

echoes are observed at the altitude where the velocity begins to cease. There
are scarcely any coherent echoes during periods of downward velocity, rather,
only the usual incoherent scatter echoes. This can be proven by evaluating the
spectrum width (coherent echoes have an order of magnitude narrower spectrum
than incoherent scatter echoes) as well as by trying to deduce electron densi-
ties from the echo power, which is far too large in case of the strong power
returns from the coherent echoes. These observations are consistent with the
idea published by Willtams et al. (1989), that the adiabatic cooling during the
uplift-phase of a gravity wave oscillation increases the chance for clustering
of Ions and thus increases the Schmidt number. The latter would result in PMSE
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enhancements.It is very intriguing, however, that these F_ISE are observed even

at the short Bragg wavelength of 16 cm of the 933-NHz radar. Rbttger and La Hoz
(1989) have pointed out some other possibilities to explain the PMSE, such as
localized recombination in the presence of heavy positive ions or charge'separa-
tion due to electric fields.

CONCLUSION

We have shown that polar mesosphere summer echoes do occur even at 933 MHz and
are correlated with the well established polar mesosphere summer echoes detected
with concurrent 46.9-MHz radar observations. We have to exclude that turbulence

can cause the coherent echoes on 933 MHz, since their extra-ordinary strength
would need a huge and extremely unrealistic turbulence intensity, which we on
the other hand cannot at all prove from our spectrum width measurements. Kelley
et al. (1987) suggested a change in diffusion coefficient In the presence of
heavy ions to be a possible cause of the PNSE. ROttger and La Hoz (1989) argue
that small-scale gradients of electron density occur due to localized recombi-
nation of electrons In the presence of heavy positive ions, which may occur in
patches of small scale length in the cold polar summer mesopause. They also pro-
pose a mechanism of charge separation In the presence of strong vertical up-
drafts and background electric fields, which could generate the necessary steep
and short-scale electron density gradients. The arlstng gradients, If they can
exist at these small scales (which may be the case in the electron gas but not
in the neutral gas), can give rtse to scattering end partial reflection of even
933-MHz radar waves. We therefore do not need enhanced turbulence to explain the
PNSE on VHF (46.9 NHz) and UHF (933 MHz).
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MULTIFREQUENCY STRATOSPHERE AND TROPOSPHERE (ST) STUDIES AT MILLSTONE HILL:
MOTIVATIONS AND PRELIMINARY RESULTS

Stephen A. Cohn

Haystack Observatory

Massachusetts Institute of Technology

Westford, MA 01886 USA

ABSTRACT

The capability to nearly simultaneously observe turbulent backscatter in the stratosphere and

troposphere at three wavelengths is being developed using radars at Millstone Hill. In addition to the UHF

(68cm) radar previously used for lower atmospheric turbulence studies, fully steerable dish antenna radars

operating at L-band (23cm) and X-band (3cm) are being upgraded to allow ST measurements. Observing a

common scattering volume with three widely separated wavelengths provides a unique opportunity to study the

scale dependence of several properties of atmospheric turbulence. In particular the wavelength dependence of

backscattered intensity can be measured and compared with that expected for a Kolmogorov-type spectrum of

turbulence. Such an experiment, planned to make use of this unique capability, is discussed and some initial

measurements are presented.

THEORY

The expression for the wavelength dependence of radar reflectivity, % of a turbulent atmosphere is

theoretically well established (e.g. OTI'ERSTEN, 1969)

-q(k) = 0.38 Ca2 h(t/3)

where Cn 2 is the refractive index structure constant (independent of wavelength), and h is the radar wavelength.

This expression is derived by applying Tatarski theory for a wave propagating in a medium of random

refractive index to a Koimogorov spectrum of turbulence. Departure from this power law would indicate

departure from the one dimensional power spectral density, S(X), expected for Kolmogorov-like turbulence,

S(X) a k(5:3), where k is wavenumber. Measurements of "q at three wavelengths could establish an observed

power law to compare with this theoretical one. Also, such measurements could differentiate between the

several possible scattering mechanism. If, for example, the returned power was due to reflection from insects, as

Rayleigh scatterers the wavelength dependence would be -q o¢ k -4. The considerable difference between these

dependencies on h would be easily measurable.

MOTIVATIONS AND PREVIOUS WORK

In the 1960's three radars at Wallops Island, Virginia were available for experiments very similar to the

ones planned at Millstone Hill. A number of studies were carried out using wavelengths ofTI.5cm, 10.7cm, and

3.2cm (e.g. HARDY et al., 1966, HARDY and KATZ, 1969). The investigators found two types of returns,

attributed to turbulence and insects. However, at the 3.2cm wavelength only insects were detected. It is possible

that the X-band radar lacked the sensitivity needed to observe turbulence. Using data from the two longer

wavelength radars, it was determined that the radar reflectivity of the turbulence had very little wavelength

dependence, consistent with the h "1/3 power law predicted for a Kolmogorov-type spectrum.

Aside from the measurements at Wallops Island, no experiment similar to that planned at Millstone

Hill has been attempted. However, the need for such an experiment has been emphasized in the intervening

years. Discussion at the May, 1983 Workshop on Technical Aspects of MST Radar held in Urbana, Illinois

recognized the importance of multiple frequency radar observations to the understanding of atmospheric

turbulence and interpretation of MST radar data and recommended that such an experiment be carried out

(LIU, 1983). More recently, discussion at the November, 1987 Battan Memorial Conference on Radar

Meteorology suggested such an experiment and led to a feasibility test at Millstone Hill.

A number of features of the Millstone Hill site make it well suited to carry out a multifrequency

experiment. First, of course, is the presence of the three high powered radars with appropriate wavelengths.

Second is the steerability and narrow beam width of all three systems (see table 1). Finally, the large gain of the

X-band radar (one of the most sensitive 3cm radars in the world) should permit probing of the turbulence close

to its dissipation scale.
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PRELIMINARY RESULTS

A test of the radar configuration in August, 1988 provided an opportunity to collect some data from
each of the three systems. Although the power returned to each radar is at present uncalibrated, it is possible to

compare the line of sight wind speeds measured by each system to confirm that each is indeed receiving and
correctly processing the turbulence backscatter. Figure 1 shows a time series of wind speed measurements at

each of five altitudes over a period when all radars collected data. The consistency of the wind speed from one
measurement to the next with a single radar, and agreement between the three radars lend confidence that the

measurements are valid. Signal power in arbitrary units is similarly displayed in figure 2. Since it is uncalibrated

only self-comparison of measurements taken with a single radar is meaningful. Again the consistency gives no
reason to doubt the measurement. For both velocity and power, however, values obtained with the X-band
radar have larger variability from one measurement to the next than the other two systems.

Examination of the power spectra, from which velocity and signal power are derived, shows an

unexpected feature. While the UHF and L-band spectra appear typical, the X-band spectra often consist of a
number of spikes over a range of doppler frequencies rather than a continuous, Gaussian-like peak (figure 3).

Further investigation will be needed to see if this is a technical problem or a result of geophysical significance.
A few possible explanations that will be examined include 1) the spikes are returns from discrete targets (e.g.
insects), 2) the 1.5cm Bragg scale is less than the turbulent dissipation scale at the observed altitudes so only

some spots within the pulse volume provide backscatter, 3) an instrument problem could be corrupting the
signal.

CONCLUSIONS AND FUTURE EMPHASIS

The feasibility test which produced the data presented here successfully demonstrated the following: 1)
each of the three radars at Millstone Hill can be operated in an ST mode, 2) the UHF and L-band radars can

receive turbulent backscatter, 3) the X-band radar receives backscattored power, possibly from both turbulence
and hard targets, doppler shifted to the wind velocity, and 4) data collection can be cycled between the radars
providing measurements at three wavelengths on time scales of less than 30 minutes.

The main emphasis in the near future will be on calibration of the radar power, on understanding the

form of the X-band radar's spectra, and on collecting data to test the scale dependence of lower atmospheric
turbulence.

Table 1
CHARACTERISTICS OF THE MILl,STONE HILL RADARS

UHF Steerable L-band X-band
..............................................................................................................................

Wavelength (m) 0.68 0.23 0.03
Diameter (m) 46 26 37
Peak Power (MW) 2.5 2.5 0.3

Gain (riB) 46 47 67
System Temp (K) 120 150 250

Beamwidth (dog) 1.0 0.6 0.06
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USE OF TWO WIND PROFILERS FOR PRECIPITATION STUDIES

P. E, Currier

Aeronomy Laboratory
National Oceanic and Atmospheric Administration

Boulder, Co 80303

S. K. Avery

Cooperative Institute for Research in Environmental Sciences and
Department of Electrical and Computer Engineering

University of Colorado, Boulder, Co 80309

I. Introduction:

Two profilers were colocated at the Flatland Radar Site (near Champaign, Illinois) for
coordinated observations during May and June of 1988. The following data was taken during
the passage of a storm containing two rain bands. The operating parameters of these radars
were

The 50 MHz profiler:

50 kw peak, 310 w average;

750 meter resolution;

128 point FFT;

no spectral averaging.

The 915 MHz profiler:

300 w peak, 6 w average;

150 meter resolution;

64 point FFT;

spectral averaging: 3 to 25 spectra;

additional ground data included: surface rain rates, surface wind
speed/direction, surface pressure, relative humidity, temperature.

it. The 915 MHz _

In clear air the UHF profiter's maximum range is approximately 2.5 kin. While in the
presence of precipitation it is closer to 9 km.

Assuming Raleigh scattering, the rain drop cross section is proportional to o_/_.4 (d:
drop diameter; X: radar wavelength). Thus the rain drop cross section is 52 dB higher at 915
MHz than at 50 MHz. This return completely overwhelms the clear air echos. With this sensi-
tivity it is possible to study the evolution of precipitation from snowflakes/ice to rain, from 9
km in altitude down to 100 meters. To be able to determine a rain Drop Size Distribution
(DSD), terminal fall speeds of the rain drop must be determined. Various methods have been
used to infer vertical air motions from measured precipitation fall speeds. These methods
require a priori assumptions about the DSD (SANGREN, 1984) or are empirical (JOSS,
1970) and not precisse enough (ATLAS, 1973).
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Ill. The _ MHZ _

Because of the 915 MHz radar's inability to get clear air returns in the presence of pre-
cipitation, the 50 MHz capability to measure clear air is necessary. This data can then be
used to correct the fall speeds mesured by the UHF profiler for updrafts and downdrafts.

At 50 MHz the simultaneous measurement of precipitation and clear air returns have
been used to determine DSDs (FUKAO, 1985; WAGASUKI, 1987). However, at the melting
later it is difficult to separate the two returns. Also, in the presence of clear air returns, ice
particles do not have sufficient reflectivity to be detected at 50 MHz. Thus, DSDs determined
from a 50 MHz radar are limited to certain meteorological conditions (rain rather than ice or
melting snow).

iv. The D_a_ta;."

This data was taken on May 23 1988 at 3:15:30 UT, during the passage of the second
rain band. These spectra were chosen because of the presence, in the clear air, of both a
downdraft (below 5 km) and an updraft at 7 km. The convention for vertical motions is
reversed in figure l.a (915 Mhz profiler: downward motions have positive velociUes) from that
of figure 1.b (50 MHz radar: downward motions have negative velocities). The velocity scales
for the two spectra are essentially the same (15.13 m/s for the UHF versus 15.17 m/s for the
VHF). The hydrometeors' fall velocities as seen in figure l.a are the superposition of the
drop's terminal fall velocity, vertical air motion and turbulence. In figure 1.b the maximum
updraft/downdraft is approximately 1.5/1.0 rn/s. Vertical air motions of this magnitude if not
taken into account would severely bias the DSD obtained by the 915 MHz radar. It would be
difficult to obtain a DSD from the 50 MHz profiler under these conditions (retum from the rain
is very weak compared to the clear air), and above 4 km there is no evidence of returns from
the ice/snow.

V. Conclusion:

The 915 MHz profiler is well suited for the study of hydrometeors: high sensitivity to
hydrometeors and excellent height coverage. This gives an unique opportunity to study the
evolution of precipitation from snowflakes/ice to rain. Unfortunately the clear air information is
absolutely necessary, and requires a 50 MHz profiler.
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SPATIAL INTERFEROMETRY MEASUREMENTS
WITH THE EISCAT VHF RADAR

C. La Hoz, J. R6ttgcr*
EISCAT Scientific Association

EO. Box 812, S-981 28 Kiruna, Sweden
(* on leave from Max-Planck-Institut ftir Aeronomie)

S.J. Franke

University of Illinois
Urbana, 61801 Ilinois, USA

0. ABSTRACT

The EISCAT VHF radar system with its multiple beam antenna lends itself in a near optimum way for
applications of spatial interferometry. At a wavelength of 1.339 metres and employing a configuration
with two half antennas, the spatial displacement per degree of phase difference is 5.269 metres at 85
km altitude. Thus, for example, a transverse (to the antenna beams) velocity of 10 ms -l would

produce a change in the phase of the coherence function of 1.9 degrees per second. For typical
integration times of the coherence function of 20 seconds, the phase smearing amounts to less than
40 degrees.

In a recent campaign carried out to investigate the Polar Mesosphere Summer Echoes---or PMSE
(RO'VrGER et al., 1988)---we have made the first spatial interferometer measurements at EISCAT.
The experiment was on July 5th 1988 11:30 to 15:15 UT and was characterised by mostly weak

PMSE. Meaningful values of the coherence function amplitude (> 0.7) occurred only sporadically
and were not sufficient to make estimates of the transverse velocity. The inference is that during
this experiment the irregularities that cause the scattering were diffuse within the antenna beams for
most of the time. However, the few cases when the coherence was close to one and the phase well

organised within distinct frequency intervals demonstrates that discrete scatterers within the antenna
beams do exist and that the radar spatial interferometer technique has a promising future at EISCAT.

1. INTRODUCTION

The radar interferometer technique that we implemented recently at EISCAT and is described here
was developed at the Jicamarca Radar Observatory by FARLEY et al. (1981) and WOODMAN
(1971). It has proven to be a powerful technique to study two-dimensional plasma turbulence in the
ionosphere. The mentioned authors and their collaborators have used it extensively to investigate

plasma turbulence in the equatorial and polar electrojets and in the equatorial F region.

The application of the radar interferometer technique to turbulence in the middle atmosphere is
relatively new. FARLEY (1983) gives a complete and interesting account of previous attempts---
most seem to have failed to apply the interferometer technique to MST measurements. ROTrGER
and IERKIC (1985) seem to have been the first to employ this technique successfully in a study to

compare their results with other traditional and less informative methods in applications to the strato-
sphere and mesosphere. A technique that is akin to the radar interferometer technique is the spaced an-
tenna drift (SAD) technique that is described for example by HOCKING (1983), ROTrGER (1983),
BRIGGS (1984), and additional references therein. FARLEY (1983) has described the differences
and similarities between the two techniques, as well as WOODMAN (1989) in this handbook. We

may state succintly as a reference that the essential property of the radar interferometer technique is
the measurement of the relative phase between the signals from the two intersecting antennas. In a
more sophisticated version of the technique this phase measurement is done as a function of Doppler
frequency through the use of the coherence function. In the simplest and so far most useful model
of discrete scatterers that move at different radial velocities, the phase information can be readily
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transformed successivelyintomagic of arrival,transverselocalisation,and transversevelocity,and

the amplitude informationintoangular spread,transversesize,and transversedecay (orgrowth) rate.

Following FARLEY ct al. (1981),the coherence functionof the two received signalsfrom an-

tennas A and B separated by a distance d at their phase centers is:

(VA(to)V_(w)>

SAB(W) = (IVA(w)I2>I/2(IVB(w)}2)]/2

where VA and VB are the complex amplitude spectra (not power spectra) of the signals from antenna

A and antenna B respectively, and the asterisk denotes complex conjugate.

For the simple model referred above of a discrete scatterer moving with a radial component of

its velocity corresponding to an angular frequency to, a transverse angular position 0_,, and an r.m.s.

angular width of <r_, the coherence function is:

;_aff_, 1 2 2 2
SAB(to) = e ezp(-_/¢ d _r_,)

where k is the radar wave vector and i is the imaginary unit. The phase of the coherence function,

64, = kd0,:, at altitude h and angular frequency to is related to the transverse position 6z of the

scatterer by:

6z h ch

6_ kd 2 lrfd

where f is the radar frequency and c the velocity of light. For the VHF radar at EISCAT, f = 224

MHz mad d = 60 m (see Figure 1), mad the above expression becomes:

6..._.x= 3.552 × 10-3h

As an example, the altitude of our mesospheric applications is typically around 85 km:

_X

-- = 5.269 re�degree

A transverse (horizontal) velocity of 10 m/s of a discrete scatterer will be measured as a change of

phase at a rate of 1.9 degrees/s. The half power width of each antenna is about 1.2 degrees, or 1800 m

at 85 km altitude, and the scatterer moving at 10 m/s will cross the beam in 180 seconds. The phase

will fold by 2 lr in about 190 seconds. At EISCAT we have obtained individual samples of spectra and

coherence functions at about every 2 sec giving a spectral resolution of 0.50 Hz which is equivalent

to 0.33 ms -1 at 224 MHz (see below). Typical integration times are 5-10 spectral samples (10-20

sec) to give reasonable statistical stability. Thus, the "phase averaging" t amounts to ,_20-40 degrees

per integration period. Under these conditions we will still get 18-9 spectral samples per beam transit

time, and 20-10 spectral samples before aliasing occurs. If the transversal velocity is substantially

higher than 10ms -1 , the discouraging situation described by FARLEY (1983) will occur, and the

technique, if it includes "frequency sorting", may fail. Depending on actual values, it may still be

possible to obtain useful results by renouncing frequency decomposition of the phase difference and

This "phase averaging" may become "phase broadning"-----and thus be visible----if a narrow Doppler line "walks" in

frequency (line broadning) due to the combined effect of an axial acceleration of the scattering center and a "long"

integration time. This effect may explain the peculiar linear progression of the phase of the coherence seen by
FARLEY et al. (1981) occasionally in the equatorial electro jet
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Fig. 1, The EISCAT VHF antenna: Interferometer configuration.

be happy with estimates of the phase difference in the time domain through the cross-correlation
function at zero time delay as explained by FARLEY (1983).

2. THE EXPERIMENT

The EISCAT radars are described in this handbook in the paper by LA HOZ et al. (1989) and in
additional references therein. The experiment was carried out during the EISCAT PMSE campaign
in summer 1988. A frequency interferometer experiment was also carried out during this campaign
(FRANKE et al., 1989). For the spatial interferometer experiment we employed the VHF radar in

Mode II. See Figure 1. One transmitter was connected to one of the two half antennas, and phase
coherent receivers were connected to both half antennas. The two antennas were pointed along the
vertical direction throughout the experiment that took place on July 5th 1988 at 11:30 to 15:15 UT.
Since the axes of the antennas are parallel and separeted by 60 m along the geomagnetic E-W direction
(very close to the geographic E-W), they do not overlap completely. The E-W half power beam width
of 1.2 degrees at 85 km translates into about 1800 m and the overlap length is then 1800-60=1740 m
or about 97% in linear dimension.

The transmitter modulation employed was a pair of complementary codes of length 32 with a
baud length of 2 #s giving a range resolution of 300 m. The first gate was taken at 80 km, the number
of gates was 30, and the last gate was at 89 kin. The real time processing consisted of decoding
and coherently integrating the digitised signals. Coded pulses were transmitted every 4902 #s and

the signals from 6 transmissions (including the complementary pair) were coherently integrated after
decoding to give an effective sampling period of 29412/is or a bandwidth of + 17 Hz, or in units of
Doppler velocity 4-11.4 m/s. The data were organised in records containing two seconds of data and
subsequently stored in tape.

The calculation of the amplitude and power spectra and the coherence function of the two time
series was done off line. The data were organised in time segments 1882 ms long containing 64

complex samples. A fast Fourier transform (FFT) routine was applied to these segments resulting
in complex amplitude spectra with frequency resolution of 0.53 Hz, or in units of Doppler velocity
0.36 m/s. Power spectra and the coherence function were subsequently calculated and the results

integrated for 20 seconds.
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Fig. 2. Gray-scale power map measured with antenna A

3. RESULTS

Figure 2 shows the development of the PMSE as a grey scale plot of the total power as a function of

altitude and Universal Time. In this figure, each time slice of 20 s has been self-normalised in order

to enhance the contrast of the resulting image. These PMSE were rather weak and formed a thin layer

of about 1 km or less in thickness and moved slowly between 83 and 85 km of altitude. During some

periods there is a second layer at 87 km and higher up, and at about 12:45 UT even three layers can
be seen.

Figure 3 shows the amplitude of the coherence in a format identical to that of Figure 2. Discrete

scatterers were considered to be present when the amplitude of the coherence function was 0.7 or

greater. Amplitudes less than 0.7 are plotted as a uniform light grey background. It can be seen that

occurrence of discrete scatterers are very irregular and of very short duration. In most cases their life

time was at most equal to the integration time of 20 s.

Figure 4 shows one example of the phase and amplitude of the coherence function and the power

spectra of the two signals. This event lasted three integration periods, although we show here only

the first two. Within a distinct interval of Doppler frequencies that coincides with sharp peaks in

the power spectra, the amplitude of the coherence reaches a value of 0.9, and the phase is more or

less constant, around 3 radians. It is clear from the figure that it is not possible to estimate the rate
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of change of the phase with reasonable reliability, and this holds also when taking into account the
third period of the event. We surmise that the transverse velocity of the scatterer was small. Had the
lifetime of the scatterer been longer, we may have been able to estimate the transverse velocity.

We also note that the signal to noise ratio in the two periods of Figure 4 is 3.62 and 3.86 dB. These
values are representative of the values obtained during most of the duration of this particular run. The
majority of the other experiments we carried out during this campaign had much higher intensities,
sometimes up to 40 dB of SNR. Unfortunately, we ran the spatial interferometer experiment only on
this occation. We hope to repeat it next year.

4. CONCLUSIONS

We have shown that the parameters of the EISCAT VHF radar, particularly the frequency and the

antenna configuration, suit very well for spatial interferometer applications at mesospheric altitudes.
A test experiment was carded out in the summer of 1988 during a campaign to investigate the Polar

Mesospheric Summer Echoes. The results obtained have proven our contention. Further, during this
experiment, the irregularities that produce the scattering were diffuse within the scattering volume
during most of the time. Discrete scatterers were present only sporadically, and then their life time
was probably less than the integration time of 20 seconds. In one event when a discrete scatterer
was present for about 1 minute, the phase of the coherence function changed very little indicating
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Fig. 4. Amplitude and phase of the coherence function for two consecutive time intervals.

a very small E-W velocity of the scatterer. The characteristics of this experiment were somewhat

unsual when compaxed to experiments on other days during the same campaign in that the PMSE

layer was rather thin, stable and weak. We plan to carry out more experiments to test whether the

occurrence of discrete scatterers is correlated to the intesity of the scattering or whether the scattering

irregularities at 66 cm (one half the wavelength of the EISCAT VHF radar) have the property of being

homogeneous in the horizontal dimension.
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ABSTRACT

The Chung-Li VHF radar consists of three separate transmitting-receiving an-
tenna systems and thus allows an optimum application of interferometer and inci-
dence angle measurements of radar echoes from the troposphere and the strato-
sphere. We describe here first measurements of cross spectra and the correspond-
lng phases, which vary as function of frequency due to a mean wind. We also pre-
sent first incidence angle measurements and show that the scattering-reflection
structures in the troposphere can be inclined to the horizontal by about two
degrees. We also notice a periodic change of the tilt as well as the vertical
velocity as function of altitude which we attribute to lee waves.

INTRODUCTION

MST radars are usually operated in the Doppler mode, where several antenna
beam directions are used to deduce the three-dimensional wind velocities from

the Doppler spectrum. Occasionally also the so-called spaced antenna mode is
applied to deduce the wind velocity from the cross correlation analysis of sig-
nals received at separate antennas (see for instance Rottger and Larsen (1989)
for details). Both these methods of course allow the measurement of some additi-
onal parameters, such as the signal power, the coherence time, the angular de-
pendence or the spatial coherence as well as the amplitude distribution func-
tions. These are useful parameters to study the scattering/reflection mechanism.
Neither the Doppler nor the spaced antenna method need the measurement of the
spatial distribution of the signal phases on the ground. In this paper we will

point out some advantages of amplitude and phase measurements wlth a spaced an-
tenna set-up and prove the applicability of this radar interferometer method to

deduce additional signal parameters, which the conventional Doppler and spaced

antenna methods cannot supply.

In accordance to the term frequency domain interferometry, applied by Kudeki
and Stltt (1987), we call the here applied method the spatial domain interfero-
metry _see ROttger and Larsen, 1989) or simply spatial interferometry. It allows
for instance to measure the angular spectrum ti.e., the aspect sensitivity, e.g.
Vincent and RSttger, 1980), the incidence angle, the corrected vertical and hor-
izontal velocity as well as to determine horizontal phase velocities of atmo-
spheric gravity waves and to track turbulence blobs. The latter measurements
were done by R_ttger and Ierkic t1985) with the 53.5-MHz SOUSY-VHF-Radar, who
applied the post-beam-steering and the cross spectra analysis to study waves and
turbulence in the stratosphere and the mesosphere, respectively. The origlnal
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method of cross spectrum and coherence analysis was developed and applieO by
Farley et el. t1981) to study scattering from E-region irregularities with the
50-MHz Jicamarca VHF radar. This method recently was also applled by La Hoz et
el. (1989} to investigate polar mesosphere summer echoes with the 224-MHz EISCAT
VHF radar. In the present paper we present first interferometer measurements of
the troposphere and lower stratosphere obtained with the 52-MHz Chung-Li VHF
radar.

At the beginning of this paper we show first examples of amplitudes and phases
of cross spectra of tropospheric and lower stratospheric VHF radar echoes, from
which the incidence angle can be deduced as function of Doppler shift. The se-
cond part of this paper deals with the mean incidence angle measurements, from
which the mean tilt or inclination angle of the scattering/reflecting medium or
the inclination of barotroptc surfaces can be deduced and the relevance of
"vertical" velocity estimates can be inferred (e.g., Rbttger, 1984a). We also
will discuss results obtained from the coherent addition of signal amplitudes
received at spaced antennas, which yields indications on the scattering-reflec-
tion mechanism as well as increases the signal-to-noise ratio. The angle of ar-
rival statistics, which could be obtained from Doppler sorting of singular re-
turns, will lead to more differentiated understanding of the scattering-reflec-
tion mechanism as discussed by ROttger (1984b). Detailed investigations of the
latter procedures and the analysis of cross spectra will be described in a sepa-
rate paper.

EXPERIMENTAL SET-UP

The data presented in this paper were taken with the Chung-Li VHF radar in

Taiwan, which is operated on 52 MHz (see brief description by Brosnahan et el.,
1983; Chao et al., 1986). This radar is a dual-mode radar, i.e. it allows the

application of the Doppler mode with vertical and four off-vertical antenna
beams at 16.70 zenith angle as well as the spaced antenna mode with three sepa-

rate antenna modules. Each of these modules consist of 64 Yagi-antennas, which

are fed by three phase-coherent transmitters. The beam width of a single module
is 7 degrees and that of the combined 3x64 Yagi modules about 5 degrees. Three

phase-coherent receiver channels allow the separate and simultaneous quadrature
detection and digital acquisition of signals from the three antenna modules. The
six quadrature components were analysed off-line in terms of cross spectra and

mean phase differences between the antennas.

During the first test runs the radar was operated with one transmitting and

two receiving antennas and 600 m altitude resolution. The following runs were
done with the full capability of three phase-coherent transmitters and three

complex receiving channels. In the latter run a single pulse of 2 _s duration
was transmitted with a transmitter duty cycle of I% and 40 kW peak power of each

of the three transmitters. Range samples were taken in I gs increments, result-

ing in a slightly oversampled range resolution of 150 m. All three antenna mo-
dules were in the vertical beam mode. The complex data were as usual coherently

integrated for 250 ms or 150 ms and dumped on tape for off-line analysis.

The applied new method of average phase analysis to deduce the mean incidence
angle is very sensitive to phase-unbalance between the receiver channels as well
as to remnant instrumental and groundclutter DC-components. During the digital
preprocessing step therefore the De-components were most suitably removed from
the quadrature components. ?he existing phase off-set between the antenna mo-
dules was determined by minimizing the average phase differences over several
longer data sets (each of more than one hour). The resulting significant phase
off-sets of 400 and 500 , between antennas I and 2, and I and 3, respectively,

were used to transform each coherently integrated complex signal sample to pro-
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vide phase eauallty between the three receiver channels. Following this data

preparation the cross spectra and cross correlation functions were computed.
Note that the evaluation of these analyses needs the quadrature components of
the cross spectra and cross correSation functions which is quite different from
the usual Doppler and spaced antenna velocity deductions.

PRELIMINARY RESULTS

(A) Cross Spectra

Let us assume that diffuse reflection or anisotropic scattering from a parti-
cular refractive index structure takes place as indicated in the schematics of
Fig.l. There may be certain sectors of the irregular structure which cause in-
tensified echoes due to enhanced cross sections of scatterers or focussing from
certain refractive index surfaces. If these sectors move with different radial
velocity VR', typical spikes wlll occur In the Doppler spectrum (e.g., Rottger,
1984b; Hocking, 1985). If the total structure moves with a horizontal velocity
Up due to a mean wind we will detect on the average echoes from these certain
sections wlth negative as well as positive Doppler shift. The result on the data
is well Known as the "beam width broadening effect" of the Doppler spectrum,
which could so far only indirectly be proved. If it would be possible to measure
the incidence angle 5 together with the Doppler shift one would obtain most di-
rect information on this process and may be able to deduce the horizontal wind
component Up. The vertical wlnd component Wo conventinally is deducible from the
mean Doppler shift.

W=

go

Figure I. Schematic view of a rough surface of refractive index struc-

ture causing several radar echoes reflected back to the origin. De-
pending on the mean vertical (Wo) and horizontal (Uo) velocities as

well as intrinsic fluctuating velocities different radial velocities
occur for the different radar echoes from certaln sections of the

surface.
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In Fig. 2 we show results of cross spectra analyses which yield the incidence
angle 5 as function of Doppler frequency f and more directly prove that the

spectral widening is due to the stipulated off-vertical echoes• The average
Dower densities P of the spectra are displayed by the large circles in the uDDer
panels of Fig• 2a and 2b, whereas the phases _ of the cross spectra are dis-

played in the lower panels, respectively, Each single polnt represents a phase
estimate in one Doppler bin for one data record of 6.4 s. The closed circles,

which are connected by a llne, indicate the mean phases deduced from the mean
quadrature components of the cross spectra. The relative variances Or,i of the

normalised Quadrature and in-phase spectral components are shown as dots in the
upper panels, whereas the r.m.s, variance o = J(Or_+Ol a ) of both these compo-

nents is shown by the dots connected by the llne in the uDDer panels. The notch
at zero frequency of the variances resu]ts from a st111 remnant Dr-component. It

is noted that the variance is significantly smaller at Doppler frequencies below
0.1Hz where the power of the spectrum maximises. The spectra of signals from

near the tropopause (z = 16.2 km, Fig. 2a) Indicate a clear dependency of the

phase on the Doppler frequency. On the right-hand side of the phase diagrams the
incidence or zenith angle 5 corresponding to the phase angle ¢ between the an-

tennas is given. The average zenith angles are obviously negative at negative

Doppler shift and inverted at positive Doppler shift. Thls observation will be
explained by off-zenith returns from a deterministic Irregularlty structure,
which moves horizontally with the wind. The results from tropospheric returns

(Fig. 2b) are not so evident but still the effect can principally be noticed.
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Quadrature components of the cross spectra and f denotes the Doppler
frequency.
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We take this observation as a proof that the widening of the spectra is mainly
caused by off-zenith returns from • horizontally moving structure rather than by
vertical velocity fluctuations. These measurements should also allow to estlmate
the mean wind velocity as well as should provide a test of the hypothesis of
Brlggs (1980) that the common spaced antenna method is in principle similar to
the Doppler method. A simple computation yields the relation between the slope
d_/df of the phase in the cross spectrum and the mean horizontal wind speed Uo:

de/df = -u-dlUo, (1)

where d is the distance between the antennas in meters, UO ls measured in m/s,
¢ in radtan and f in Hz. This formula holds for the very simplified assumption
of point-like antennas and a frozen-In refractive index structure moving in
direction of the antenna baseline. A more detailed treatment of such observa-
tions, also done with the Chung-Li VHF radar, combined with theoretical deriva-
tions needs to be published elsewhere. The given formula using this primitive
model already allows to explain the observed phase slope of the cross spectra to
be caused by the horizontal wind. It, thus, also allows us to estimate the mean
wind from the phase slope. Using d = 45 m between the centres of the antenna
modules number 1 and 2 and the phase slope weighted by the power density of the
spectra or by the inverse of the phase variance, we deduce the horizontal wind
speed along the baseline direction (about N-S) of about 10 - 15 m/s at 6 km and
at 6 km altitude, which is consistent with radiosonde data. It is to be noted
that the phase slope is inversely proportional to the wind speed. This means
that the slope is shallow for a strong wind, but steep for a weak wind speed.
Although one may In principle be able to deduce wind profiles from such phase
slope measurements with a set-up of three antennas, it may be more suitable to
apply the spaced antenna drift analysis for this purpose. According to the rela-
tion _ = 2_-d'-sin6, we note that the phase difference of _ corresponds to an
incidence (or zenith) angle of 3.7 degrees for d' = d/fl = 7.75. We thus find
that the incidence angle of the echoes as function of Doppler shift are within
about ±3 degrees, which is well wlthin the antenna beam width. The clear behavi-
our of the phase slope, particularly at 16.2 km close to the tropopause, tells
us on the other hand, that there is either a deterministic reflecting structure
with some surface roughness or an ensemble of frozen-in scatterers moving
through the beam. The frozen-ln interpretation means that the intrinsic correla-
tion time of the potential scatterers or of variations in the reflecting struc-

ture must be reasonably longer than the time a certain part of the scattering or

refelecting layer needs to propagate through the beam. We also deduce from the
significant slope of the phase that the radial fluctuating veloclty (i.e.,
mainly the vertical component of the fluctuating velocity) has a very much smal-

ler effect on the width of the Doppler spectrum than the component of the hori-

zontal mean velocity in direction of certain incidence angles close to the ze-
nith. This result comprises the presently most direct experimental proof of the

widely accepted "beam-broadenlng effect" of VHF radar echoes from the tropo-
sphere and the stratosphere.

Under the described circumstances we can deduce the power density as function
of the cross spectrum phase angle, i.e., the incidence angle. This allows us to
determine the anisotropy of scatterers or the reflecting structure. This is best
be possible if the phase slope is large, i.e. for small wind velocities. At
16.2 km altitude we for instance notice a fairly high aspect sensitivity of
about 10 dB per 2 degrees. This large aspect sensitivity allows us to neglect
the small decrease of power density with incidence angle caused by the antenna
diagram. The value of 5 db per degree is a typlcal value of the aspect sensiti-
vity for altitudes close to the tropopeuse. Apparently the anisotropy is smaller
at 6 km altitude which is an expected observation for echoes from the tropo-
sphere as compared to those from the tropopause. We also find other spectra
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which indicate a clear phase slope in the centre of the spectrum, whlch we can
attribute to reflection from a rough surface structure. In the outer parts of

the spectra at larger Doppler shifts the slope Is almost constant (see indica-

tions of these observations in Flg. 2b). Since the power density is slgnlfcantly
above the noise level at these larger Doppler shifts, we could attribute this to

spill-over of low frequency power to higher frequencies due to receiver non-

linearity. On the other hand, this can also be an indlcatlon that the larger
frequency power is due to isotropic scattering. This may appear as a reasonable

explanation since the power density at larger Doppler frequencies Is much lower
than at smaller frequencies and the normalized variance is close to unity, which

is an indication for a stochastic or scattering process.

It is to be noted that the characteristic phase slope can also be observed in

case of isotropic scattering provided that the radial fluctuating velocity of
the scatterers is smaller than the projection of the horlzontal mean velocity

and the intrinsic correlation tlme of the scatterers is larger than the tlme of

transit of particular scatterers through the beam.

(8) Mean Incidence Angles

After we have briefly outlined some interpretations of cross spectra, which

still need to be discussed in detail elsewhere, we will now present first mea-
surements of the mean incidence angles and recapitulate the principle behind

these measurements. Let us indicate the mean location of the scattering/reflec-

ting structure by the line S in Fig. 3 (left-hand side). It is assumed that this

,w

AI _ d112 ' , A2

"[tz "t

Figure 3. Left-hand side: Sketch of the geometry of phase measurements
of a plane wave reflected from a straight surface S at a distance r
from the centre Ao radar antennas AI and A2, which are spaced at a

distance d12. The surface Is inclined wlth respect to the horizontal
at an angle 5' which is equal to the incidence or zenith angle 6. The

surface is moving horizontally with the velocity U and vertically
with the velocity W, causing the velocity components U* and W* In di-
rection of the reflected wave.

Right-hand side: Amplitude I q { and phase _ of the complex cross
correlation function as function of temporal Ig r.
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structure Is sufficient]y far from the radar antenna, which consists of the two

recelvlng antennas AI and A2. It Is also assumed that the structure is slightly
tilted with respect to the horizontal by an angle 5'. The tilt angle 6', whlch
is equal to the incidence or zenith angle 6, is

5'= 5 = arcsin (_12"N/(2R'd12)), (2)

where d12 is the distance between the receiving antennas A1 and A2, n Is the ra-
dar wavelength and ¢12 is the phase difference of the radar slgna] received at
the two separated antennas. The phase difference can be deduced from the complex
cross correlation function 912 of the radar slgnals received at A1 and Az. The
amplitude 191 and the phase ¢ of the correlation functlon as function of tlme
lag z is shown in the right-hand side of Fig. 3. The phase of the cross corre}a-
tion function at zero lag gives the phase difference ¢12 o. Since the dlstance

between the antennas Is known, the incidence angle can be determined by this
method. It is to be noted that thls procedure yields the mean incidence angle G,
which averages out any horizontal or vertical mean or fluctuating velocities.
However, the incidence or tilt angle is a very meaningful and useful quantity,
since it comprises an estimate of the lnc]inatlon of the barotropic surfaces in
which the refractive index structures are embedded. It also allows to determine
the accuracy with which the real vertica| and horizontal velocities can be mea-
sured. The latter argument is explained by the following simple example.

Assume that the structure S moves with a mean velocity consisting of a hori-
zontal component U and a vertical component W. Slnce the structure is tilted the
radar will see a mean incidence angle 5 and measure the composite the radial
velocity

VR'= W" + U* = W-cos 6 + U-sln 5. (3)

If the angle G and the horizontal wlnd component U is not zero, the radial velo-

city VR' measured by the radar may not be the rea| vertical velocity W as com-

monly assumed. To assess the relevance of thls effect, the horizontal velocity
as well as the incidence angle needs to be known. The former is usually measured

with the Doppler or the spaced antenna method, but the latter, namely the angle
G, cannot usually be measured, if one would not apply the spatial interferometer
technique.

In Fig. 3 we have also schematically drawn the amplitude and the phase of the
cross correlation functlon as function of time lag to demonstrate two other
parameters from which the velocities can be deduced. These are the delay zlz
which is needed together with delays from a group of three receiving antennas
and other parameters to deduce the horizontal spaced antenna drift/wind velocity
U with the full-correlation-analysts of the spaced antenna merthod (Brtggs,
1980) as well as the slope of the phase ¢' as function of temporal lag to deduce
the radial velocity

VR'= _/4_.¢', with ¢'= d¢(I=O)/dz. (4)

Inserting VR', deduced from equation (4), lnto equation (3) we could deduce the
real vertical velocity W, if the described effect is relevant.

In Fig. 4 we show results from the analysis of mean incidence angle, radial
veloclty as well as power profile estimates. These displays show scatter plots,
where each single sample is from a 30s-averaging period and the distributions of
30 of these samples are plotted in form of an intensity plot for each altitude
gate. This display allows us to obtain an immediate view on the statistical
distribution functions without becoming biased by the usual displays of mean
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Figure 4. Distribution plots of:
(A) Power profiles resulting from the coherent addition of signal

amplitudes (upper panel, PC) and from the incoherent addltion of
power (lower panel, PI) received in the three antenna channels. The

limits are 60 dB.
(B) Radial velocity (WW) within ± I m/s limits (upper panel), and

Dower difference (PD=PC-PI) wlthin ± 6 dB (lower panel).
(C) Eastward component (DE) of the incidence angle 6 (upper panel)

within limits of ± 3 degrees, and sum (SP) of the phase differences

(lower panel) between all three antennas within limits of ± _.
(D) Northward component (DN) of the Incidence angle 6 (upper panel)

within limits of ± 3 degrees, and transformed velocity component AL

(lower panel) within limits of 50 m/s.

values. We also have applied some test analyses in order to prove the proper

functioning of the equipment and the data processing, which we will discuss
first.

In the panels A of Fig. 4 power profiles are shown which indicate the well-
known layered structure of VHF radar returns from the troposphere wlth vertical

antenna beam. The upper profile results from the coherent addition of the signal

amplitudes from the three receiving antennas. Following this coherent addition,
the power Pc was computed. The lower profile of panel A results from the (inco-

herent) addition of the power values of the three antenna channels, yielding the
power PI. In order to emphasize the contrast between these profiles, we have
plotted the difference Po of powers Pc-Px in the lower part of panel B. It is

noted that this difference is significantly positive. In those altitudes where

the signal-to-noise ratio is large enough, the difference is between 3dB and
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4 dB. The coherent addition as compared to the incoherent addition of three co-
herent signals should result at most in a theoretical difference of 4.7 dB. We
can draw the following conclusions from the fact that the experimental differ-
ence is close to the theoretical one:

(I) The phase-off-set compensation (mentioned in the chapter on the experimen-

tal set-up) between the antenna channels was performed correctly. This is a
basic requirement to measure the incidence angle accurately.

(2) The observed signals from the troposphere have a spatial correlation di-
stance which is equal to or larger than the mean spacing between the antenna
centers, i.e. larger than some seven radar wavelengths. It is assumed that this
large correlation distance is resulting from either partial reflection from
stratified structures or from highly anisotropic scatterers.

Another test was done to prove that the phase computations were done accurate-
ly, namely that the phase differences between the three antennas should stati-
stically add up to zero, i.e., Z_ = el2 + _2s + _sl = O. The result is shown in
the distribution plot SP of the lower panel C in Fig. 4. We notice the follow-

ing:

(I) The distributions as function of altitude are centered around zero, which

is the expected result,
(2) There are a few significant outliers, which result either from receiver

non-linearity at the lower gates or from remnant DC-components (fading ground

clutter or instrumental bias off-set) at the gates with low signal-to-noise-ra-
tio.

(3) Even in the upper altitudes above 10 km the data samples are not equally
distributed between +_ and -_, which significantly indicates a signal in those

gates. This is consistent with the observatlon of a positive power difference PD
in the lower panel B. However, it still needs to be carefully checked if this

signal is not due to fading ground clutter.

In the upper panel B of Fig. 4 the distributions of the radial velocity V,'are

plotted. We notice again a clustering around a mean value which is at a small
positive velocity. Larger periodic excursions are superimposed. In the upper pa-

nel C of Fig. 4 the eastward component of the tilt angle 5E, and in the upper

panel D the northward tilt angle 5N is shown. Except of a few cluster regions of
larger 6 at localised range gates, which likely are due to fading clutter, the

tilt angle 5E oscillates by about one degree amplitude around zero, whereas
little periodic variation is noticed in 6,.

These results can be interpreted as follows:

(I) The oscillation in 5 is not due to a phase ringing effect in the receiver

or the transmitter, since this should be manifest in all channels, i.e. in 5_ as
well as in 5N.

(2) There is a periodic variation of the eastward tilt with altitude, which

correlates wlth the radial velocity. We imagine that this can be explained by a
mountain lee wave structure. The radar is located about 40 km west of the high

central mountain ridge of the island of Taiwan. The prevailing easterly winds

should excite mountain waves in the troposphere, which have periodicities in the
east-west but not in the north-south direction. Mountain waves are characterised

by periodic tilts of the isotherms and the flow pattern. This could result in

the observed east-west inclination of the refractivity structures causing the
radar echoes. It could also result in a Quasi-periodic variation of the power

profile, which may be apparent in our observations (however, obviously diluted
due to other effects of changing humidity, stability and turbulence). Lee waves

also would exhibit themselves by periodic altitude variations of the radial ve-
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locity, which wealso observe(seeupperpanelB of Fig. 4). Thefact that the
tilt aswell asthe radial velocity is onthe averagefairly stationaryduring
the observationperiodof 15 miutes, places so_ more confldence on our assump-
tion that the observed features are caused by lee waves.

If we now would assume that the periodic variation of the radial velocity Is

due to a small component of the horizontal wind transformed into radial direc-

tion due to the tilt 6, we should see this effect by combining the measured VR'
with 8 according to formula (3). Since the tilt angle is very small and the ver-

tical velocity could be fairly large in the case of lee waves, this effect

should be barely noticeable unless we would have an estimate of the horizontal

wind. Since the latter is not yet available during the preparation of this note,

we just have displayed in the lower panel D of Fig. 4 the ratio VR'/sin6 aS a
crude estimate of the horizontal velocity component. Except of two positive ex-

cursions around 6 km and 9 km we cannot see any evidence for the dilution of the
vertical velocity by the horizontal velocity in these data. In any case, the

measured incidence angle will allow us to correct the radial velocity as soon as
we can include the measured horizontal wind and to obtain an estimate of a dilu-

tion. It anyhow can be concluded here that the radial velocities are the best

estimate of the vertical velocity when the simultaneously measured incidence
angle is zero or very small.

CONCLUSION

We have proved the applicabilty of phase measurements with three spaced anten-
nas to obtain additional parameters for studying the scattering-reflection me-

chanism as well as to better understand some common features in the velocity and

power profiles of ST radar measurements. Although these preliminary analyses
cannot be finally conclusive and need much more refinement, we are convinced

that the phase measuring capability is a very useful and necessary complement to
MST radar investigations and wind profiler applications.
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A POST-STATISTICS STEERING TECHNIQUE FOR MST RADAR APPLICATIONS

Erhan Kudeki I and Ronald F. Woodman 2

I) INTRODUCTION

The use of multiple spaced antennas to receive return signals from common targets in
the far field is becoming a common practice in atmospheric and ionospheric radar studies in
recent years. The reason for the popularity of such "in_'feromeuic" radar configurations is the
additional information contained in the phase relationships of the different receiver signals
regarding the angular distribution of atmospheric targets within the classical radar resolution
cell. This information can be exploited in a variety of ways in data processing stage. Some of
the currently used processing techniques include the so called radar interferomeu'y (RI), when
the phase difference between independently sampled antenna signals and its temporal and
Doppler frequency variations are inspected and interpreted directly [e.g., Woodman, 1971;
Farley et al., 1981; Kudeki et al., 1981], imaging Doppler interferomeu'y (IDI), when the
angle-of-arrival information from phase differences at discrete Doppler frequencies are
combined with the corresponding Doppler velocities to infer background wind velocities [e.g.,
Adams et al., 1986], and post beam steering (PBS), when received signals at individual
antennas are combined, following suitable phase shift operations, to synthesize new beam
directions [e.g., Rottger and Ierkic, 1985]. The choice of most suitable interferomeu'ic
processing technique depends, to a large extent, on the spatial and temporal characteristics of
the scattering targets under investigation, as well as what aspects of the investigated
phenomena are desired to be emphasized.

The purpose of this note is to present a new interferornetric data processing technique
which will be referred to as "post-statistics steering" (PSS). In essence, PSS is a beam
synthesis technique similar to PBS, but has distinct advantages over the latter in data storage
and economy of computations, especially in beam scanning applications. Radar signals, being
of statistical nature, invariably need to be interpreted in terms of suitable moments such as
power, auto-correlation function and/or power spectrum. In PBS, moment calculations are
postponed until beam synthesis is accomplished via some appropriate combination of
individual antenna signals. In PSS, by contrast, beam synthesis is postponed until all the
possible self- and cross-moment estimates are formed with the multiple receiver signals. Beam
synthesis and manning can then be performed with a simple arithmetic of the available self- and
cross-moments. Since the computation of such moments (which can be perfomaed in real time)
results in vast data compression, data storage requirements for post-experiment PSS analysis
are far more relaxed than raw data storage needed for post-experiment PBS analysis.

II) POST-STATISTICS STEERING (PSS)

Consider the interferometric radar configuration depicted in Figure 1, where identical
antennas A and B, separated horizontally by some baseline D, are used to detect signals from
far field targets illuminated by a single transmitting antenna T pointed in the vertical direction.

1Deparlment of Electricaland ComputerEngineering,University of ILlinois,Urbana,IL61801

2JicamarcaRadio Observatory, Apartado3747, Lima, Peru
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Let complex signals a and b .received by antennas A and B, respectively, define a signal vector
8.

(i)

Assuming identical gains for the receiver channels connected to both antennas, return signals a
and b should be identical for an idealized point target positioned directly overhead. Signals a
and b should differ only by a phase factor for a similar target positioned off the zenith. Phase
and amplitude differences in a and b may be expected for a more general and reaiistic
configuration of randomly distributed multiple or diffuse targets within the common radar
resolution cell

The inner product of s with some transformation vector t defines a possible linear
combination a of a and b:

¢z = t. s = tTs -- Itl (2)

When antennas A and B are regarded as the elements of a two element linear array, operation
(2) amounts to beam synthesis selected by the transformation vector t. The operation may be
perform_ in hardware, as is often done, by combining the array elemems with desired phase
shifts (cable lengths) and amplitudes (amplification factors), or in software as in PBS [e.g.,
Rottger and Ierkic, 1985]. When the operation is carried out in software, beam scanning is
possible by varying t. Signals synthesized in a beam scanning operation may be organized in a
new signal vector o, which can be obtained from s by multiplication with a suitable
transformation matrix T. To develop the idea of PSS it is useful to consider a linear
a'ansformation of the form

o= =rs= T2, TmJ tbj
(3)

where o_and _ correspond to signals at two new beam directions defined by the elements of T.
If IT is non-singular, it is evident that o carries the same information as s, since at any time s
can be recovered via sfT-lo.

In atmospheric radar studies return signals are generally assumed to be of random
nature. Therefore, data interpretation is typically attempted with suitably defined average
statistical parameters derived from the radarsignal, such as signal power, auto-correlation
function, or power spectrum, etc. The essence of PSS is to avoid direct use of transformation
(3) in beam synthesis, but to calculate the average statistical parameters associated with o from
those associated with s. To that end we define statistics matrices of s and o as
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.3 r <aa'*>

b J>:/ .
L<ba' >

<bb'>J=1 rL] (4)

and

-----<0 o'*T>

<13_"> <_IY'>
(5)

respectively. In (4)-(5), * denotes complex conjugation, superscript T transposition, and
angular brackets stand for ensemble or statistical averaging (or, time averaging in practical
implementation). The primes denote possible time shifts between signal time series a and b, or
ct and _, in which case raa, rab, etc., may be taken to represent auto-correlation (ACE) and
cross-correlation (CCF) functions, which, at zero time delay reduce to power and cross-power,
respectively. Combining (3) and (5) Zmay be expressed as

Z = <Uo'*T> = < (T S)((T S,)*)T> = T <gs'*T> T *T = T S T t (6)

where Tf=T *T is the Hermitian conjugate, or the adjoint of matrix T. Clearly the elements of
the statistical matrix 27of the synthesized beam signals o are linear combinations of the
elements of the statistical matrix S of the original signals s. In PS$ this result is exploited te
calculate the statistical parameters concerning synthesized beam signals using simple arithmetic
operations involving only the elements of the statistical matrix S of the recorded vertical
incidence signals.

Consider a particular mansformadon matrix

r-:o]
which amounts to synthesizing two reception beams with array factor maxima at

O = +sin "l[_/kD] (8)

off the zenith (ct corresponds to +, and _ to - signs), where k is the wavenumber
corresponding to the radar carder frequency. It can then be shown that the expansion of (6)
leads to



2O6

r_ = (r+r_) + (r_eiA+rbe'%

rBl_= (r+rbb) + (r be-iA+rble_)

ral_= (rab+rl_) + (r_i_+rbbeiA)

rBa = (rab+rl_) + (re'ia+rbbe i_)

(9)

Using relations (9), ACF and CCF of signals a and [3, raa, ro_8,etc., corresponding to new
beam directions selected by A, can be computed once the ACF and CCF of signals a and b, that
is raa, rbb, tab, and rba are available. The results, and specifically ra_ and r[]J3,can be
interpreted as the usual outputs of a beam swinging operation.

Finally, Fourier transforming relations (9), and remembering that raa, rab, etc., form
Fourier transform pairs with the self- and cross-spectra Ore(a)), Oab(O.)), etc., it is recognized
that relations (9) can also be used to calculate the self- and cross-spectra Octa(a)), O_(co) ....
of synthesized beam signals ct and _ when raa, rab.... are replaced by Ore(a)), ¢I)ab(Ca').... in
(9). But, by definition, Oab---(I>m*, and Oaa, (_ob gre purely real, so that (9) can be simplified
and recast as

= (Ou+_bb) + 2Re(@_e iA}

OBB = (O +O_) + 2Re{O be-iA}

O_ = ¢)_ = 2Re[O b] + (O e_+Obbe'_

(10)

for purposes of spectral calculations. Note that @aa, _ob, and Oab--'_* are also used in usual
interferomeu'ic analysis [e.g., Kudeki, 1988], with the most useful interferometric information
contained in the phase and the normalized amplitude of @ab. Clearly, (I0) indicates that both
interferometric and beam swinging experiments can be obtained using the same antenna
configuration and statistical processing.

In summary, then, PSS analysis first amounts to estimating the ACF and CCF, or the
power- and cross-spectra of the vertical incidence signals a and b, and second, to repeated use
of (9) or (10) with different A values for beam scanning. Clearly ACF or power-spectrum
estimation in different beam pointing directions is reduced to simple arithmetic operations
involving the self- and cross-moments of interferometric (see Figure 1) vertical incidence data.

mr) PRACTICAL CONSIDERATIONS

In practice it is difficult to ensure identical receiver channel gains assumed above in
interfemmetric experiments. Typically, unequal cable lengths, as well as differences in "front
end" amplification factors contribute to gain differences between the receiver channels
connected to different receiving antennas. This undesirable situation can be corrected for in the
processing stage if and when the quantitative nature of the gain discrepancies is known as a
result of calibration measurements. For example all gain discrepancies can be lumped into a
single complex parameter g, defined as b/a when a single receiving antenna is connected to
both reception channels used in the experiment (a typical calibration procedure). In PSS
applications rbb rab, and rba and Obb, Oab, and ¢l>oaneed to be corrected via division by Igl2, g
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Figure 1. An int_'feromeu'i¢ radar configuration. Only reception antennas arc shown.
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and g* respectively, prior to use in (9) and (10). The magnitude correction Igl can also be
obtained from the experiment itself, by simply comparing ran with rbb, or, ¢_aa with _ob-

The overall beam pointing direction is determined not only by A, but also by the
transmission and reception element (antennas A and B in Figure 1) gain patterns, and the
"aspect sensitivity distribution". The latter is related to the angular variation of target cross-
section, determined by the nature of the scattering and/or reflecting irregularities in the medium.
For an isotropic scatterer (no aspect sensitivity), only the two-way gain pattern, that is the
product of transmission and reception gain patterns, need to be considered to estimate the
effective pointing direction. Since the two-way gain pattern is usually well known, this is a
relatively straightforward procedure. With aspect sensitive scatterers, however, the two-way
gain pattern need to be multiplied with the aspect sensitivity distribution. Unless the latter is
known a priori some amount of uncertainty will always accompany the calculation of effective
beam directions and derived parameters.

Difficulties mentioned above are by no means unique to PSS technique. Gain
discrepancies can bias all interfcrometric results and need to be corrected for, using similar
procedures to that described above in connection with the PSS technique. Similarly,
uncertainties related to unknown aspect sensitivity distribution contaminate all beam swinging
techniques, including those accomplished in t_ hardware. In fact, even vertical wind
measurements accomplished using a single vertically pointed radar beam are subject to aspect
sensitivity related uncertainties, as pointed out by Rottger and Ierkic [ 1985]. Although rarely
used in practice, one advantage of the interferometric technique is the possibility of eliminating
such uncertainties by determining the aspect sensitivity variation within the radar beam through
the use of software based beam scanning operations. As a result of its much simplified beam
scanning procedures, PSS technique can be potentially important in this regard. Preliminary
aspect sensitivity and wind velocity measurements obtained with a PSS analysis of
mesospheric Jieamarca data will be presented in a separate publication, to illustrate this
possibility.

IV) CONCLUSIONS

A new post-statistics beam synthesis and scanning technique (PSS) suitable for the
analysis of interferometric radar data has been introduced. Beam synthesis and scanning is
accomplished using the self- and oross-moments of multiple receiver signals as the ingredients
of simple arithmetic operations. By contrast, the post beam streering (PBS) technique requires
mm_ cosdy raw data manipulations to obtain equivalent results. Data storage and computation
requirements can be considerably relaxed in intcrfcron_tric beam scanning applications through
the use of PSS technique. The technique can be efficiently exploited in simultaneous aspect
sensitivity and unbaised wind velocity measurements using vertically pointed intefferometfic
radar systems.

Although only the two-receiver case has been explicitly treated in this note, the
technique can be readily used to handle interferometric data collected with multiple-receiver
radar configurations including orthogonal baselines. It is also suitable for range scanning
applications with frequency-domain intefferometry (FDI) [Kudeki and Stitt, 1987] data. The
generalization of the technique for multiple-receiver, multiple-frequency applications will be
treated in a future publication.

Acknowledgements. This work was supported by NSF Grant ATM-8814629 at the University
of Illinois.
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ABSTRACT

During the Polar Mesosphere Summer Echo (PMSE) campaign in 1988, the ftrst multiple-
frequency mesospheric measurements were carried out using the EISCAT 224 MHz radar. The
radar was configured to perform essentially simultaneous measurements of coherent backscatter on
two closely spaced frequencies. This type of data can be used to investigate the frequency
coherence of the radar echoes and to perform frequency-domain-interferometry (FDI) analysis.
When an isolated scattering layer is present the FDI technique can provide extremely high
resolution information about the thickness and relative position of the layer. A case study of two-
frequency data collected on July 3, 1988 is presented in this paper. For the frequency separation
used in this experiment, statistically significant values of coherence greater than 0.5 imply layer
thicknesses smaller than 200 m. Coherences as large as 0.83 were observed in the data indicating
that scattering layers with thicknesses in the range 85-120 m are sometimes present in the polar
summer mesosphere. In the example reported here, such a layer is shown to exist for a period of
approximately 10 minutes and its position is tracked as it descends over more than lkm in altitude
and transits from one range gate to the next. In addition, the FDI technique is used to study a case
where a sudden frequency jurnp is observed in the Doppler spectrum. Spectral jumps appear to be
a characteristic of the 224 MHz echoes (LaHOZ et al., 1989). We employ the FDI analysis with
Doppler sorting and compute the coherence specmma of the data before, during and after the jump.
The phase of the coherence spectrum is shown to exhibit features that axe consistent with scattering
from relatively thin, tilted layers containing (nearly) isotropic turbulence. These preliminary results
show that the multiple frequency measurement technique is a powerful tool for studying the
mesospheric echoes and should be exploited in future mesospheric campaigns at EISCAT, perhaps
in conjunction with spatial interfemmetry measurements.

INTRODUCTION

The Frequency Domain Interferometry 0_'DI) technique was first described and employed
by KUDEKI and STITT (1987) as a means for obtaining high resolution information about the
thickness and position of isolated scattering layers when they exist within the scattering volume
defined by the radar pulse length (See also Kudeki and Stitt, this volume). These authors analyzed
mesospheric echoes obtained on two closely spaced frequencies using statistical coherence analysis
in a manner directly analogous to spatial domain interferometric analysis (FARLEY et al., 1981).
They showed that when a single, thin scattering layer is present in the scattering volume defined by
the radar pulse length it is possible to obtain an extremely accurate estimate of the thickness of the
layer and to track the position of the layer within the vertical dimension of the scattering volume.
The FDI technique employs measurements of the normalized complex correlation (coherence)
between the backscattered returns from two closely spaced radar frequencies ft and f2=fl+Af.
Typically, alternate radar pulses are sent at the two carrier frequencies and the backscattered returns
are coherently averaged separately for a time that is short compared to the correlation time of the
scattering medium. Denoting the complex amplitude of the receiver output (after coherent
integration) obtained at frequencies fl and f2 by V 1 and V 2, then the coherence between the two
time series, Sl2, is defined by
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<VIV2*> (I)
St2 - ._<[VI[2 > <IV212>

where the* denotescomplex conjugationand theangularbracketsdenoteensembleaveraging.In
practicetheensembleaverageisreplacedby atimeaverageoveralengthoftimethatissufficiently
longcompared tothecorrelationtimeof thebackscattercdreturns.Analyticalmodels forthe
coherencehave been givenbyKUDEKI and STITr (1989)and FRANKE (1989,thisissue).The
phase and magnitudeof thecoherencecan be used toobtainestimatesof thefirstand second
centralmoments oftherangedistributionfunctionofatmospherictargetsinsidescatteringvolume
withverticaldimensiondefinedby thepulselength.For example,FRANKE (1989)considered
thccasewheretherefractiveindexvariationsresponsibleforbackscatteredechoesfrom avertically

directedradarbeam can be modeled by arandom and statisticallyh_mo_ncous refractiveindex
fieldAn(_,t) which isweighted by a gaussianfunctione-(Z-Zl)/2°_iz.This simplemodel
representsa scatteringlayerwiththicknessaIand ccn_'oidzIandcan beusedtoobtainanexplicit
expressionforthecoherence.Under theassumptionthatthelayerthicknessissmallcompared to
the radar pulse length and the antenna beamwidth is narrow so that wavefront curvature effects can
be ignored (FRANKE, 1989) the coherence is found to be of the form

S 12 = c'JZAkZle'_&2¢712 (2)

Thus, the magnitude of the coherence can be used to obtain an estimate of a I and the phase is used
to determine the relative position of the layer within the scattering volume, zi. In some cases, it is
useful to extend the coherence into the frequency domain, e.g. the coherence spectrum, S 12(C0), is
computed:

S12(co) = <V1(c°)V2(c°)*> (3)

"_<IVI(co)12><IV2(¢o)12>

where Vl((O ) and V2(c0) are the Fourier transforms of the voltage time series. In order to avoid
confusion we will use the term coherence coefficient when referring to data processed according to
equation (1) and coherence spectrum when referring to equation (3). In the simplest situation
where a thin layer is present in the scattering volume, the magnitude and phase of the coherence
spectrum have the same interpretation as they do for the coherence coefficient discussed earlier. In
certain cases this Doppler sorting can be used to separate multiple scattering layers with different
line of sight velocities (KUDEKI and STITr, 1987) or, as will be discussed in this paper, to infer
the characteristics of a thin, tilted scattering layer.

In this paper, we present a case study of two-frequency data collected within a 37 minute
period on July 3, 1988. The data were collected during the "Polar Summer Mesosphere Echoes"
(PMSE) campaign using the EISCAT VHF radar.

OBSERVATIONS

The EISCAT radars are described in this handbook in the paper by LaHOZ et al. (1989)
and in additional references therein. For the two-frequency experiments reported here a double
pulse scheme was employed whereby a 10 Its pulse at 223.8 MHz was transmitted and then
followed 2 _s later by a 10 Its pulse at 224.0 MHz. Thus the altitude resolution of the data is
approximately 1.5 km if conventional processing is employed. The interpulse period was 1.813
ms. Separate receiving channels were used to obtain 10 samples at altitudes corresponding to 80-
93.5 km at each frequency. Coherent integration of 14 successive samples was employed to obtain
time series with an effective sampling period of 25.4 ms. The coherently averaged samples were
collected in memory until 192 samples (4.87 seconds) had been collected at each range gate and at
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each frequency and were then dumped to tape. A new data collection cycle started every 5
seconds.

The coherence coefficient was calculated from a temporal average over 12 data records each
consisting of 192 coherently integrated samples providing an estimate of the coherence coefficient
every minute. Auto and cross-spectra were computed using the ftrst 128 points of each 192
sample data record. The data were Fourier transformed using the FFT after removing the mean
and applying a Hanning window. The resulting spectra were averaged for intervals ranging from
15-s to 1 minute and the resulting averaged spectral estimates were used to estimate the coherence
spectrum.

Figure 1 shows how the magnitude of the theoretical coherence value depends on the
thickness of the scattering layer for the 200 kHz frequency separation used in this experiment.
Note that coherence values larger than 0.5 and 0.7 are associated with layer thicknesses smaller
than 200 m and 150 m, respectively. When interpreting the coherence values computed from finite
length time series it is necessary to take into account that fact that the (i) coherence estimates are
biased, and (ii) spurious large values of coherence can be measured when the data segment length
is not significantly larger than the correlation time of the backscattered radar signal (e.g.
BLOOMFIELD, 1975). It is useful when interpreting the significance of measured values of
coherence to determine the limiting (maximum) coherence at the 95% level under the hypothesis of
zero population coherence. The limiting coherence is given by (BLOOMFIELD, 1975):

S0.95 = [1 - (0.05)1/(N'1)11/2 (4)

where N is the number of degrees of freedom in the sample used to obtain the coherence estimate.
Observed values of IS121less than S0.95 should be regarded as not significantly different than
0.When the coherence is estimated asin (1) the approximate number of degrees of freedom can be
obtained from T/x 112 where T is the length of the time series and x TI2 is the time to 50%
decorrelation. For estimation of the coherence spectrum, (4) still applies but in this case the
number of degrees of freedom is equivalent to the number of independent spectra averaged to
obtain the result. Note that in order for the limiting coherence to be smaller than 0.5 it is necessary
to have N at least as large as 12.

In the absence of the noise, the expected value of the estimated coherence will be larger
than the true coherence. An approximation for the bias in the coherence estimate that is valid when
the coherence is not close to zero is (BLOOMFIELD, 1975):

I (i__)2
B - 4(N- 1) 7 (5)

where "yis the true coherence value. Note that if the true coherence is larger than 0.5 and the
number of degrees of freedom is at least 12, then the bias will smaller than 0.026 and can be
neglected. An additional bias term is contributed when the signal to noise ratio is finite (e.g.
KUDEKI and STITF, 1989 this issue). This term acts to decrease the measured coherence. This
bias can be corrected for by multiplying the computed coherence values by
[(1 +N1/S 1)(1 +N2/$2)] 1/2 where S I/NI and $2/N2 are the signal-to-noise power ratios obtained at
fl and f2, respectively.

RESULTS AND DISCUSSION

Figure 2 shows the signal-to-noise ratio during a 37-minute period beginning at 12:42:05
UT on July 3, 1988 at 6 range gates covering altitudes from 84.5 to 89.0 kin. The signal-to-noise
ratio ranges from 0 to 15 dB and corresponds to moderate PMSE echo strengths. Figure 3 shows
high resolution (15-s integration time) spectrograms for the 4 middle range gates where significant
signal power is observed. Velocities on the lower half of the spectrogram correspond to motions
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Layer Thickness vs. Coherence for 200 kHz frequency separation
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Figure 1. Theoretical relationship between the magnitude of the coherence coefficient and the
thickness of the scattering layer for the 200 kHz frequency separation and 10 gs pulse length used

in the experiment.
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Figure 2. Signal-to-noise ratio averaged over
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minute interval beginning at 12:42:05 on July 3,
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toward the radar (positive Doppler shifts). Several very interesting features are present in these
data. First, we note that at the upper two range gates in Figure 3, that abrupt widening of the
spectrum is associated with abrupt increases in the backscattered power level which can be seen by
referring to Figure 2. The spectral width exceeds the :t: 20Hz range of the spectral estimate and
aliasing occurs at these times.

Turning to the lower two spectrograms, we note that a jump in the centroid of the spectrum
occurs within the first 10 minutes at 86.0 krn. During the transition period the spectrum widens
considerably and the echo power is reduced. The transition occurs within one minute. This
spectral feature appears to be a special characteristic of the 224 MHz PMSE data and several
examples are discussed in more detail elsewhere (LaHOZ et al., 1989; RO'I'rGER et al., 1989;
both in this issue). We will return to further analysis of this feature in a later section. Note also
that the extremely wide spectra in the upper two range gates are associated with an extremely
narrow spectrum at 86.0 km. Finally, we note the apparent transition of a layer from the 86.0 km
gate to the 84.5 km gate which occurs at 25 minutes into the plot. It can also be seen in Figure 2 as
a decrease in the power level in the 86.0 km gate and a corresponding increase in the 84.5 km gate.
The overlap between the adjacent gates due to the smearing action of the receiver filters is apparent.
The spectrograms show that the transition occurs during a the period where the velocity is
downward (toward the radar) and accelerating. The abrupt transition indicates that the layer must
be relatively thin compared to the range gate thickness and the coherence analysis discussed next
bears this out.

Figure 4 shows the coherence coefficient computed using a 1 minute average (12 data
records) for the same period shown in Figures 2 and 3. The closed symbols represent raw
coherence values with no correction for the finite signal-to-noise ratio. The open symbols are
obtained by multiplying the raw values by [(I+NI/SI)(I+N2/S2)] 1/2 which corrects for the bias
due to noise contamination. This correction is only meaningful when the signal-to-noise ratio is
sufficiently large on both channels. When the SNR is less than 1 on either channel, the corrected
coherence coefficient is set to zero. When no signal is present, the theoretical coherence between
the two frequencies is 0 and adjacent time samples are uncorrelated so the number of degrees of
freedom in the coherence estimate is 12x192=2304. The corresponding limiting (maximum)
coherence at the 95% level is 0.036. This level corresponds to the largest of the coherence values
that are observed in the upper and lower range gates. Note that increases in the coherence
coefficient above the no signal level are expected when the mesospheric echoes are present even in
the case when there is no significant correlation between the echoes at the two frequencies (i.e.
when the scattering layer is more than 300-400 meters thick). This is simply a manifestation of the
bias in the estimator and its dependence on the correlation time of the data. Thus, it is important to
consider the computed coherence values together with the spectral width or, equivalently, the
correlation time of the signal. Returning to Figure 4, we note the coherence levels seen in the 89.0
km and 87.5 km range gates near the end of the time period are generally less than 0.25 except at
the beginning in the 87.5 km gate. In addition, the spectra are quite broad and even aliased at times
indicating that the correlation time is short and on the order of or at most a few times larger than the
sampling interval. Thus, the bias should be small which implies that the scattering layer thickness
is at least several hundred meters thick (see Figure 1).

On the other hand, the coherence values seen in the 84.5 km and 86.0 km range gates are
quite large (approximately 0.70 - 0.75) after the first 10 minutes. The sharp decrease in coherence
observed at 86.0 km at 25 minutes and the corresponding increase at 84.5 km corresponds to the
period where the layer moves from the upper to the lower range gate. The coherence at 84.5 km
reaches a maximum value of 0.83 (corrected for SNR). In order to verify that these large values of
coherence are not simply manifestations of the bias associated with the estimate due to extremely
long correlation times or to some kind of spurious feature in the data we have plotted in Figure 5
the signal amplitude at the two frequencies for a representative 5-s period corresponding to the
largest coherence value (0.83) observed in the 84.5 km range gate. This Figure shows the
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Figure 4. Magnitude of the coherence coefficient
averaged over one minute intervals for the time
interval shown in Figure 1. Closed symbols

represent raw coherence values and open symbols
are coherences corrected for the finite signal-to-noise

ratio. The scale ranges from 0 to 1.

Figure 3. High resolution spectrograms

averaged over 15-s intervals for time interval
shown in Figure 1. The logarithm of the

spectrum is plotted on a gray scale with

dynamic range of 40 dB. Doppler shifts
on the lower half of each plot are toward

the radar. The range of Doppler shifts is
+ 19.7 Hz which corresponds to -t- 13.2 m/s.
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EISCAT July 3, 1989 13:11:05
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Figure 5. A 5-second segment of raw data corresponding to the interval exhibiting the largest
coherence coefficient (corrected value---0.83)showing the correlation between the signal amplitude
fluctuatSons at the two frequencies.
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extremely high correlation between the amplitude fading on the two frequencies and also shows
that the correlation time is significantly smaller than 1-s. In addition, inspection of the spectrogram
for the 84.5.km gate shows relatively wide spectra during the interval when the coherence is
largest. Thus the bias and variance of the coherence estimate will be very small and we can
interpret the computed coherence values and the inferred layer thicknesses as accurate estimates.

The value of 0.83 for the coherence corresponds to an equivalent layer thickness of 104 m
while the average value of 0.70 corresponds to a thickness of 145 m. An estimate of the 95%
confidence interval for the estimated value of 0.83 was computed assuming a 0.5-second
correlation time and is +0.04, -0.05 (BLOOMFIELD, 1975). The corresponding range of layer
thicknesses is 86-120 meters. Referring back to Figures 3 and 2, it is interesting to note that the
high coherence values observed at 84.5 km and earlier at 86.0 km are associated with rather large
echo powers which are of the same magnitude as the echoes from the upper range gates where the
coherence is small and large layer thicknesses are inferred. Thus, completely different signal
characteristics are seen in adjacent range gates separated b:r only 1.5 kin. We also note that
preliminary analysis of 150 m vertical resolution data obtained using the EISCAT VHF radar and a
64 baud complementary phase code pair have shown on occasion that scattering layers are confined
to one range gate - a result that is consistent with the FDI results presented here. Finally, we note
that analysis of the phase of the coherence coefficient shows the rapid downward motion of the
layer that carries it from the 86.0 km range gate to the 84.5 km gate. This is shown in Figure 6
where the 2 n ambiguity of the phase estimate has been "unwrapped" and the values scaled to
represent relative layer position. The results are computed using the phase estimate obtained from
both range gates. The rapid downward motion of the layer between 20 and 29 minutes on the plot
is clearly seen. The transition between range gates occurs near 25 minutes on this plot. Note that
the layer moves down approximately 1200 meters within a period of 9 minutes. This corresponds
to an average downward velocity of 2.2 m/s which is consistent with the spectrogram shown in
Figure 3. Note also the downward acceleration of the motion that begins at 23 minutes on the plot.
This coincides with the acceleration seen in the spectrogram during the transition,

We now turn to an analysis of the spectral jump that occurs in the 86.0 km range gate
during the first 10-m of the plot. Inspection of the SNR and coherence plots show that the
coherence coefficient is relatively low both before and after the jump and dips to an even lower
value during the jump.

In order to obtain more information about the nature of the spectral jump, we have
computed the coherence spectrum S12(¢0) for periods before, during and after the jump. Figure 7
shows the auto-spectra and magnitude and phase of the coherence spectrum averaged over 1
minute intervals. These spectra are shown for five l-rain, periods. The first and last two periods
correspond to the periods immediately before and after the jump, and the middle period
corresponds to the transition. The limiting coherence at the 95% level for this 1 minute average of
12 independent spectra is 0.49.

Note that the magnitude of the coherence spectrum attains large and statistically significant
values both before and after the jump with values as large as 0.95 observed. This is in contrast to
the relatively small values of the coherence coefficient during this interval. It should also be noted
that the magnitude of the coherence spectrum is large over a frequency interval corresponding to
only part of the auto-spectra. For example, at 12:46:05 and again at 12:48:05 and 12:49:05 the
frequency interval containing large coherence is offset from the center of the auto-spectra. Note
also that the portion of the spectrum that exhibits the highest coherence corresponds to the largest
Doppler shifts both before and after the jump. Even more interesting is the phase spectrum which
shows a distinct positive slope just before the jump and a negative slope just after the jump. A
single example of a similar phase slope feature was reported by KUDEKI and STI'I'r (1987) in
their FDI analysis of the coherence spectrum of mesospheric echoes obtained at Urbana. Recalling
that the phase of the coherence estimate is directly proportional to the distance of the scatterers from
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Figure 7. Auto spectra and coherence spectrum
magnitude and phase for 5 one-minute intervals
before, during, and after the jump in the Doppler
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the radar, the range of phase angles covered by the tilted phase trace is therefore proportional to the
extent of the mattering region along the line-of-sight. Referring to Figure 7 we note that the phase
slope covers a range of angles corresponding to roughly _ radians in the examples shown. This
corresponds to an extent of the scattering region of approximately 375 m along the line-of-sight
direction. This explains why the coherence coefficient was relatively small during this period.

The simplest explanation for the linear trend of the phase vs. Doppler frequency is a vertical
gradient in the vertical component of the neutral velocity. The slope of the linear phase trend
corresponds to an effective vertical gradient on the order of 16m-s-l-kin "i. This is large and is
difficult to justify on physical grounds. It is also difficult to imagine that such a large vertical
gradient would suddenly change sign within less than one minute. Since any model that we
choose to explain the phase tilts should also explain the jump in the spectrum we refer to
ROTTGER et al. (1989) who suggested two scenarios that could explain the sudden frequency
jumps. One possibility is that the echoes are partial reflections from sharp gradients in refractive
index. If the reflecting surfaces are corrugated or rippled, then the echoes will come from one or
more specular points on the surface. The specular points can rapidly disappear and new ones can
re-appear causing discontinuities in the Doppler shift of the radar echoes. These authors have
numerically simulated this possibility and have shown that jumps exactly like the one seen here can
be reproduced. They also point out that partial reflection from a single layer is not necessary to
produce this signature as tippled scattering layers containing highly anisotropic irregularities would
provide the same signature. We have used the numerical simulation method to test whether this
scenario could account for the observed cross-spectral phase signature. We find that linear phase
variation with Doppler frequency can indeed be reproduced, however we were not able to
reproduce such steep phase slopes with reasonable parameters. To illustrate the difficulty with this
model we note that, in order for a specular point to exist within the beam, the tilt of the layer must
be less than the half-width of the beam, or less than approximately 1.4 ° in this case. If we imagine
a horizontally extended and tilted layer drifting horizontally, then in order for line-of-sight distance
to the specular point to change by 375 m it is necessary that the tilted surface be translated
horizontally over a distance of at least 375/tan(l.4 °) = 15.3 km. Now in order for the distance to
the specular point to change by 375 m within the one-minute averaging period the horizontal
velocity of the layer would need to be on the order of 250 m/s. This velocity is a factor of 5-10 too
high to be reasonable. Furthermore, when shorter integration periods axe employed, the specular
point model produces a narrower spectrum and a linear phase variation that covers a proportionally
smaller range of angles because the specular point has less time to move. We have computed the
phase spectrum from the experimental data using 15-s integration periods and find that the width of
the spectra and the range of angles covered by the phase slope does not change significantly.
Thus, the data are inconsistent with the specular point model.

A second possibility pointed out by Rottger et al. is that the frequency jumps could be the
signature of "wave steepening or wave tilting" (e.g. WEINSTOCK, 1986) which occurs as gravity
waves enter the amplitude regime where non-linear effects become important. A steepened wave
can distort a thin reflecting layer or layer of turbulence in such a way as to cause jumps in the
frequency spectrum. The idea here is similar to the reflecting surface idea mentioned previously,
however, now we do not require specular reflections. Instead, a relatively thin tilted layer of
isotropic, or nearly so, turbulence drifts through the beam. The geometry is more or less
equivalent to a horizontal layer observed with a tilted radar beam. The effect is to add a component
of the horizontal velocity to the line-of-sight velocity sensed by the radar. The spectrum will be
broadened because the different parts of the beam sense different line-of-sight velocities, For
narrow beams, both the line-of-sight velocity and the line of sight distance to the layer will change
in an approximately linear manner from one side of the beam to the other. Thus, the linear
variation of apparent distance (phase) and Doppler frequency can be reproduced. Furthermore, the
linear variation of phase and the width of the spectrum due to beam broadening will not depend on
the integration time used to produce the spectral estimate since the layer is always present in the
beam. The sudden change in the Doppler frequency can be explained if the sign of the tilt changes
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abruptly as in the picture presented by RO'VrGER et at. (1989). This appears to be the most
reasonablemodel andcouldexplaintheobservations.Forexample,we notedearlierthatthephase
tiltcorrespondstoa range of linc-of-sightdistanceson theorderof 375 m. This distanceis
directlyrelatedtothetiltof thelayerintheproposedmodel. The horizontalextentoftheradar
beam isapproximately2.0krnsotheeffectivetiltofthelayerisapproximatelytan'l(0.35/2.0)=
10°. Thc mean Dopplershiftofthespectrabothbeforeand afterthejump correspondstoaline-
of-sightvelocityon theorderof± 3 m/s. Ifthisiscausedby a tiltedlayerbringingthehorizontal
velocityintoviewthentherelationshipbetweenhorizontaland nominalline-of-sightvelocityisVlos
= vhsin(10°) = 0.17 vh. Thus, the horizontalvclocitywould have to be on the orderof
3/0.17=17.6m/s. Althoughindependentestimatesofthehorizontalwindsarcnotavailable,thisis
areasonablenumber and shows thattheobservationscan beexplainedbytheproposedmodel.

CONCLUSIONS

We have presented a preliminary analysis of the first two-frequency "coherent scatter"
measurements using the EISCAT 224 MHz radar. The FDI analysis technique was used to show
that extremely thin scattering layers with thicknesses on the order of 100m are sometimes present
in the polar summer mesosphere. We were able to infer the layer thickness with high accuracy
even though the radar pulse length was 10 las long, corresponding to a 1.5 km range gate
thickness. The layer position was tracked for a period of 10 minutes until it appeared to dissipate.
Furthermore, we have studied an example where the Doppler spectnma exhibits a frequency jump.
Such frequency jumps have been found to be a characteristic of the PMSE observed at 224 MHz
and several intriguing examples have been presented in LaHOZ et at. (1989) and ROTTGER et al.
(1989). We found that the two-frequency coherence spectrum exhibited a sloped phase
characteristic just before and after the discontinuity. This signature was found to be consistent
with scattering from a tilted and relatively thin scattering layer. The frequency jump can be
explained if the sign of the tilt changes abruptly which is expected if the layer is responding to a
steepened gravity wave. These results are based on analysis of only a short data segment and
cannot be taken to be representative of the overall characteristics of the polar summer mesosphere
echoes. They serve to illustrate the potential of the FDI technique at EISCAT, however. Further
analysis and interpretation of the excellent data set collected during the 1988 PMSE campaign is
continuing and results will be reported in future publications. Finally, we hope that these
preliminary results will encourage the further development of EISCAT as an MST radar. In
particular, the possibility of running simultaneous spatial- and frequency-interferometry is exciting
and should make it possible to obtain even more information about the structure and dynamics of
the scattering irregularities.
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ABSTRACT

Simultaneous data on the refractive index structure constant C 2(z,t)

have been obtained during a coordinated campaign conducted on thensame site

and involving a VHF ST radar and an optical SCIDAR (SCintillation Detection

And Ranging). Turbulent layers are detected at the same altitude by the two

techniques with a turbulence of the same order of magnitude (discrepancy of

the order of 4 due to calibration uncertainty) and the same variability in

time above altitudes whe#e humidity is contributing to radio refractive index

and not to optical refractive index.

INTRODUCTION

D

3 E-17

2_0

2
Fi 8. 1 - Time variation of C

n

2fig0

measured by the scidar technique

23_0 'JT

2
Time variation of refractive index structure constant C are presented

between 1 and 27 km (Fig. l). Strong signals can be identified as high as 21

or 26 kilometers llke with a very powerful MST radar (Poker Flat, Jicamarca,
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Arecibo, Mu or Sousy). But these signals have been observed in Toulon where

the Provence Radar is not powerful enough to get oblique echoes higher than

20 kilometers. These results very similar to MST observations have been in

fact obtained with a very different technique originally developped by the

"Astrophysics Department" of Nice University using scintillations from double

stars (gamma Virgo or gamma Leo). The SCIDAR experiment (SCintillation

Detection And Ranging) has been set up from late March to early May 1987 on

the Toulon University campus at about 200 meters from the "Provence" ST

radar.

Previously, a similar experiment has been performed near SUNSET radar in

Colorado (GREEN and VERNIN, 1984) but due to meteorological and technical

conditions only a few nights of comparison have been available and large

discrepancies observed 2 nights amongst 4.

GENERAL DESCRIPTION OF THE EXPERIMENTS

i) The ST Radar

The "Provence" ST radar has been described elsewhere (CROCHET,1989 same

issue) and the main parameters are the following :

- Transmitted peak power : 36 KW

2
- Antenna are: 3300 m

- Efficiency including loss in cable : 0.35

- Antenna efficiency : 0.51

- Radar frequency : 45 MHz

The 45 MHz ST radar is selecting a 3.14 meters wavelength in the turbu-

lence spectrum and according to usual values for the internal and external

lengths of turbulence this wavelength can be considered to be well inside the

inertial subrange.

The turbulent structure constant is determined from measurements of the

signal to noise ratio with the following hypothesis.

The noise is the cosmic noise obtained by interpolation from sky maps

(DALAUDIER et ai.,1989) and the mean value is of the order of 6000 ° K outside

of the galaxy.

2
The value of the structure constant C is then :

n

= 7 S r 2 ( 600 )2 .512 .Cn2 2 10-l (-_-) (i0-57555)_ _--6y-_

with : S : signal power

B : noise power

r : range in meters

£r : range resolution in meters

NCI : number of coherent integrations

ii) The SCIDAR technique

The SCIDAR will select a range of horizontal wavelengths in the inertial

subrange of the turbulente spectrum between approximately 5 to 20 centimeters

(VERNIN and AZOUIT, 1983).
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The light froma star is perturbedby the optical indexrandomfluctua-
tions dueonly to temperaturefluctuationsandthe scintillations observedon
the groundare the results of a convolutionof the randomphasefluctuations
andFresneldiffraction filtering.

With the weakfluctuations approximationthe spectraldensitycanbe
related to the intensity of turbulencethroughthe followingequation:

-ii
.h K2 .

W(K T) = [8_ k 2 IKl 3 ] [0.033 Cu2 (h) 6hi sin 2 £_)

[Kolmogorov law] [turbulence intensity] [Fresnel term]

related to the space correlation function by Fourier transform

C(_) = W(K T) e -i KT " rdK T

with : k : optical wavenumber

K : selected turbulent wavenumber

h : altitude of the turbulent layer

The scintillation pattern through the 0.84 m plastic lens of a portable

telescope is the superpositlon of the patterns of the double star. The angle

between the two stars being known and the correlation distance being

measured, it is then possible to determine the altitude of a single turbulent

layer.

For multiple layers, an iterative inversion of the spatial correlation

function is necessary.

With the double stars (gamma Virgo and gamma Leo,) selected for the pre-

sent experiment the height resolution of the scidar is about i000 meters of

the same order than the radar resolution (600/1200 m).

EXPERIMENTAL RESULTS

For about one month of experiments, 17 nights of simultaneous observa-

tions have been obtained.

During 3 nights, the radar has been seriously perturbed by industrial

interferences due to sparks on an high voltage power line during mistral

conditions and these nights have been elimlnated from the comparisons as

during another night when the moon was partially affecting the SCIDAR

measurements.

Time

techniques

magnitude.

evolution of the turbulent layers identified independantly by both

is similar and the mean turbulent level is of the same order of

The data have been integrated in time during i-2 hours periods corres-

ponding to the time of observation of the same double star.
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Fig. 2 - Comparison between radar and scidar measurements of the refractive

index turbulent structure constant C 2

The results are presented (Fig. 2) with an adjustement factor of 4 (6db)

corresponding to the mean difference between the absolute value of the

structure constant determine independantly by the two techniques. At the

present time, this permanent discrepancy with the scidar value larger than

the radar one by 6 db cannot be explained and can be considered as due to the

non perfect calibration of both instruments. Errors in the radar measurements

are certainly due to inaccuracy in the antenna efficiency and variations in

the cosmic noise used as a reference. Some errors in the scidar structure

constant could be due at same altitudes to the complex iterative inversion

process.

However, in spite of this adjustment factor of 6 db this two techniques

very different by theirs principles are in fairly good agreement (Fig. 3)

above i0 kilometers where humidity does not contribute.

The deep minimum which is sometimes indicated on Scidar data is not

significant because it is below the sensitivity threshold of this instrument.

It has to be noted that the Scidar sensitivity increases with altitude

(Fig. 2) at the opposite of the radar sensitivity. That explains the good

results obtained by the scidar technique at 25 Km (Fig. i) like a MST radar.
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CONCLUSIONS AND PERSPECTIVES

The very different radar and scidar techniques identify in real time the

same turbulent layers when they are sensitive enough and when humidity is not

involve (above about i0 km).

There is a general agreement between the absolute measurement of the

structure constants obtained independantly even if some progress have still

to be made to explain a systematic discrepancy of about 6 db.

The scidar operating only during clear sky and new moon conditions is

more sensitive at high altitudes and specially adapted to investigate

stratospheric turbulent layers.

The ST radar which is an all-weather instrument is more sensitive at low

altitudes due to the range dependance and to contribution of humidity fluc-

tuations to the structure constant.

2
It would be very useful to compare scidar measurements of C to

measurements obtained by a powerful and well calibrated MST r_dar (MU,

Arecibo, Jicamarca ?...) as a proof of the scidar exact calibration and then

to use the calihrated transportable scidar as a standard to calibrate other

ST radars.
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Summary

Variation of scattered signal power with range in atmospheric radar
experiments is fully understood only for a point target and for volume
scattering from a homogeneous random medium. In these cases the signal
power decays, respectively, as inverse-fourth power and inverse-square of
range. Intermediate cases of random media with partial space-filling
characteristics are numerically examined in a fractal model. Planar targets
are successively divided into cells of smaller size, eventually reduced to
isotropic 'point' targets. At each stage of division, cells are activated with a
probability p, which controls the degree to which the scattering region is
filled - or its fractal dimension D. For each realization of the medium, the
signal power is obtained by coherently adding the complex receiver voltage
due to each point target. It is found that volume scattering is a good
approximation even for targets that only fill-up a plane i.e. have fractal
dimension D~2.

Introduction

In atmospheric radar experiments, the dependence of received signal power
on range of the target is exactly known for only two ideal cases. The signal
power due to a point target fails off as inverse-fourth power of range, but
only as the inverse-square of range for a distributed homogeneous random
medium.

The behavior of scattered signal power Ps in the two cases is best expressed
through the radar equation [see e.g. Tatarskii, 1971; Doviak and Zmic, 1984;
Collin, 1985; or Sato, 1989]. We consider a monostatic radar experiment at a

frequency fo (or wavelength Xo), using a circular antenna of diameter d with

on-axis gain G. The gain is related to the effective antenna area A through
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G---4nA/(ko)Z. The antenna radiates over a beam of width 0=aXo/d, where ct is
nearly one. The target is assumed to be in the far field of the antenna
radiation pattern.

Consider first a point target of effective cross-section o at range r. The target
reradiates a small fraction of the incident flux towards the receiver antenna.

The power in received signal is obtained as

Ps = (PtG_____)x 0 x (A) x L = PtA2 L 0 [1]

4_r2 4_r2 4_ _h_r4

where Pt is the transmitter power, and all the losses have been lumped

together in L. We note that Ps falls with range r as r -4.

Next we consider a homogeneous ensemble of many randomly distributed
point targets. Ps is appropriately obtained through summing the contribution,

on a voltage basis, of all the point targets. It is conventional to assume that the
targets are statistically independent and their contributions are additive on a
power basis. The effectiveness of this ensemble in scattering radio waves is
specified through a cross section Ov per unit volume. The region of medium

that contributes to Ps is located at a range r and is delineated by the beam

width 0 and a resolution Ar in range. The nominal volume that contributes to

Ps is then V=r 2 _ Ar, where 8f1=02/4 is the solid angle subtended by the
beam. Then the radar equation becomes

Ps - (PtG) × V ov × (Am) x L - (PtA)°_2 L x Ar ov
4_r 2 4rtr 2 64 r2

[2]

Since V increases with r2 due to beam spreading, the final result that Ps

varies as r-2 appears quite reasonable. We also note that Ps is independent of

radar wavelength _-o, except through Or. Other forms of the radar equation

for specific antenna shapes and illumination patterns differ only in numerical
constants from equation [2], which assumes a well defined scattering region
limited by 0 and Ar.

Whether atmospheric irregularities that contribute to scattering, conform to
these extreme cases is dubitable, especially in view of empirical evidence for

their temporally and spatially intermittent structure [Rastogi and Bowhill,
1975; Fritts and Rastogi, 1985]. The exact power-law dependence of Ps on
range r is a function of the extent to which the target fills the medium. It
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varies from r-4 for a point target to r-2 for a distributed random medium,
which spatially fills up the scattering region V. Intermediate cases are not
amenable to.analysis but have some implications on suitable scaling laws for
radar probing of realistic random media.

In this note we examine the range dependence of Ps for these intermediate
cases. The extent to which the scattering region V is filled is controlled by the
fractal dimension D of the ensemble of point targets. A brief review of
fractals is included in the next section. The scattered signal power Ps is

obtained by adding the contributions of point targets, at the receiver, on a
voltage basis. Range dependence of Ps as a function of D is then examined.

Fractals as models for a random medium

Many natural objects which show structure at a hierarchy of scales cannot be
described through smooth functions. Their structure can be convincingly
represented through the use of fractals [see e.g. the authoritative essay and
treatise by Mandelbrot, 1977 and 1983]. The following very brief remarks
serve only to introduce the notation, specifically the definition of fractal
dimension D and its relation to the Euclidean dimension E and topological
dimension Dr.

The simplest fractal is any natural irregular curve (of topological dimension
Dr = 1) drawn on a plane (in Euclidean dimension E=2). The length L along
the curve can be measured by using yardsticks of length y, put end to end
along the curve. L(y) generally depends on y, and in fact increases as y is
made smaller unless the curve is a straight line. The slope or gradient of L(y)
with y on a log-log plot indicates how irregular the curve is. For a straight
line, the slope is indeed zero. The fractal dimension D of the curve is defined
through

d log L(y)= I-D [31
d logy

and is indeed 1 for a straight line.

An artificial but instructive example of a fractal curve is the (triadic) Koch
curve (Figure 1). We start with a line segment of unit length and divide it into
three equal segments. The center segment is replaced by two sides of an
equilateral triangle. The total length is now 4/3, measured with a yardstick
y=l/3. If this operation is repeated on each segment, we obtain a total length
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of (4/3) 2, now measured with a yardstick (1/3) 2. The operation can be
iterated an arbitrary number of times. At each iteration the yardstick y
reduces by a factor (1/3), and L(y) increases by a factor (4/3). The fractal
dimension D of the Koch curve is obtained by equating the slope

log(4/3)/log(1/3) to 1-D as D=log(4)/log(3)=l.262. The value of D is greater
than D-r=l as the Koch curve is more irregular than a straight line. Yet D is

considerably less than E=2, a value that is approached for a very irregular
curve that tends to fill the entire plane. The Koch curve can be randomized,

without changing D, by selecting the segment to be subdivided from the
results of throwing a die. By putting Koch curves on the three sides of an

equilateral triangle, one obtains a Koch island enclosed by a fractal coastline.

FIGURE 1. The fractal Koch curve in successive stages of construction, and

the Koch island obtained by applying this construction to the sides of an
equilateral triangle. These curves have a fractal dimension D=1.262 as
discussed in the text.
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A construction similar to above considers a distribution of points (DT=0) on a
straight line (i.e. in Euclidean dimension E=I). It begins with a unit line
segment. The center one-third of the line segment is deleted. The same
operation is applied iteratively to undeleted segments. This construction
yields a distribution of points on a line, so called Cantor dust, with
D=log(2)/log(3)=0.631. Once again we find that D lies between DT=0 and
E=I.

As our next example, we begin with a unit square (in E=2). The square is
divided into n2 equal subsquares of side n -1, and this process can be iterated.
The Euclidean dimension (E=2) for an area is recovered by noting that at
each stage of division the yardstick length is reduced by a factor n, as n2 new
subsquares are created and E=2=log(n2)/log(n). Now suppose only a fraction
p_n-2 of subsquares is filled at a stage of division, and the process is applied
iteratively only to those subsquares that have been filled. After several
iterations, the unit square is filled with an apparent random pattern of
'points' or dots of finite size. The fractal dimension D of this pattern is at
most E, but can be as small as 0. At each iteration, the number of subsquares
covered by the pattern is p n 2 while their side is reduced by a factor n. D can
now be defined in an analogous way as log(p n2)/log(n) or 2+log(p)/log(n).
The additive factor is actually negative or zero, since p<l.

The fraction p may also be regarded as a probability. Then the pattern is
truly random, and statistically self similar under magnification. The extent to
which the random pattern fills the unit square can be controlled by selecting
p. When p=n -2, D becomes 0. The extension to E=3 should be obvious with
D=log(p n3)/log(n). Examples of realizations of random dots on a plane are
shown in Figure 2. The dots may be regarded as random point targets in a
radar scattering experiment. Such examples then serve as the basis for
numerical experiments described next.

Formulation of scattering from a fractal medium

We have used a numerical simulation of radar scattering to study the
variation of signal power with range, wavelength and aspect of the target. In
this formulation, the response of a monostatic radar to an isotropic point
target is evaluated as follows. A unit scattering cross section is assigned to the
point target. A point target si at a point ri is illuminated by a beam that is
uniform over its width 0. The scattered electric field Ei at the receiver

antenna under the far-field assumption varies with the distance ri to the target
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FIGURE 2. Random patterns of dots on a 64x64 grid. At each step of
division a cell is divided into 4x4=16 subcells which are then selected with a

probability p>4-2. The steps are iterated three times due to finite pixel size.
The parameters p and D increase from left to right. Two different
realizations are shown for each case. Such patterns model realizations of
point targets in a distributed random medium. The fractal dimension D,
controlled by the parameter p, determines the extent to which the medium
fills up the plane.

as (ri) -2, and its phase changes by -4nri/_.o. The complex signal vi at the
receiver output is linearly related to El. The signal power due to an ensemble

of point targets is obtained from the accumulated complex voltage v=Zi vi, as
Ps=vV *. This assumes that the point targets are statistically independent and

the Born approximation, that scattering of the scattered field is insignificant,
holds.

In actual simulation, we have considered planar on-axis targets. This limits us
to D<2 in a Euclidean dimension E=3. A fractal target with D<2 is generated
by subdividing the scattering region of 4096x4096 points into 16=4x4
subcells at each of six successive steps. At each step, a subcell is switched on
with a probability p. Typical realizations of random points on a plane are as
shown in Figure 2. Full simulation of a volume target with -64 billion points
is clearly impractical for computational reasons.

In physical terms, a linear dimension of 0.I m is associated with each point
target. The linear size of the scattering region is then N 0.4 km. For
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computational reasons, the beam width and range resolution are kept constant

at 0=0.9 ° and Ar=0.32 km. Five values for each of the following parameters

were used : target range r from 5 to 20 km, zenith angle _ from 0 ° to 20 °,

wavelength _.ofrom 3 m to 1 m. The probability parameter p that controls the
fractal dimension D was varied from 0.3 to 0.7 in increments of 0.1. For

each of the 625 distinct cases, Ps was averaged over 20 different realizations.

The scaling law for dependence of Ps on any parameter e.g. the range, is then

obtained through regression analysis. Only the range dependence is discussed
in this paper.

The parameter values reflect typical middle-atmosphere radar experiments.
At some radars that use large antennas, e.g. Jicamarca and Arecibo, near-
field effects are significant. These are simple to include and will be of interest
in our future work as the radar equations, [1] and [2], are valid for the far-
field only.

Results for range dependence : Discussion and interpretation

We stipulate a power-law relation of the form Ps~r-_ for range dependence

of scattered signal power. The exponent 13is 4.0 for a point target and 2.0 for

a target that spatially fills up the beam, i.e. has D=3. The exponent _ was

obtained by linear regression of log (Ps) on log (r), in the numerical
experiment described above, for five distinct values of D between 1.13 and

1.74 at wavelength _=2.5 m and zenith angle 4=10 °.

Figure 3 shows the variation of l_ with D for the five cases, and also the

extreme cases D=0 and D=3. A linear-least square fit to the five points, and a
cubic spline fit to all seven points are shown. The volume-filled case (13=2.0),

is well-nigh attained for D as small as ~2 i.e.for targets that only tend to fill
up a plane. For D>2.3, the approximation 13=2.0 holds to within 5%.

The above result does not necessarily hold for for all target orientations. For
a planar target oriented perpendicular to the beam, and for all targets near
vertical incidence, signals from point targets within a Fresnel zone add
coherently or on a voltage basis. Evidence for these coherent reflections {see
e.g. Rastogi and R0ttger, 1982] has been noticed in our numerical
experiments and these cases are being examined further.

The simple fractal model of a random medium used above is still far from
realistic as it does not include spatial inhomogeneity evident in thin, stratified
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layers of turbulence routinely observed in the atmosphere. Improved fractal
models e.g. those using an anisotropic cascade [Lovejoy and Schertzer, 1986]
are successful in representing such layers and will be used in our future
work.

! 2 3

FroclolOtmenston, D

FIGURE 3. Variation of the parameter 13,in a power-law range dependence

of signal power, on fractal dimension D. Extreme cases of point target
(D=0) and volume scattering from a homogeneous random medium (D=3)
are shown by hollow circles. Solid circles are the averages over twenty
realizations in a numerical experiment. Dotted line is the least square linear
fit to these. Solid line is a cubic spline drawn through all the seven points. At

first the parameter 13falls linearly with D, but tapers off near D-2 to the

volume-scattering case. [_=2.5 m, _=10°].
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GRAVITY WAVES AND TURBULENCE IN THE MIDDLE ATMOSPHERE

R. A. Vincent

Department of Physics and Mathematical Physics

University of Adelaide

Box 498 GPO Adelaide

Australia 5001

Since the last MST radar workshop in 1985 there have been a number of

studies, especially radar investigations, which have advanced our knowledge

of waves and turbulence, including cllmatologies, spectral studies, flux

measurements, and source effects.

The temporal variations in wave activity in the mesosphere and lower

thermosphere have been addressed in detail at at least two stations.

Observations at Saskatoon and Adelaide both show evidence for semi-annual

variations in wave activity at heights below about 85-90 km, with the minima

in activity coinciding with the reversals in zonal flow at the equinoxes

(VINCENT and FRITTS, 1987; MANSON and MEEK, 1986; EBEL et al., 1987). An

interesting feature is that the wave motions show pronounced anisotropies.

At Saskatoon there is a distinct north-south alignment for waves with

periods less than i hr (EBEL et al., 1987) while at Adelaide the motions

tend to be aligned in the NW-SE quadrants in summer and almost NS in winter

(VINCENT and FRITTS, 1987). An examination of rocket data by ECKERMANN and

VINCENT (1989) shows that these anisotropies are also manifest in the

stratosphere over central Australia. The found a very similar seasonal

alignment of wave motions to those observed at Adelaide in the mesosphere.

The anisotropies appear to be partly caused by the removal of waves by

critical level interactions with the mean winds as they propagate up from

below but also appear to indicate preferred sources of wave activity.

Direct measurements of mesospheric momentum fluxes made with the dual-beam

technique were reported by REID and VINCENT (1987) and FRITTS and VINCENT

(1987). These studies supplied further evidence that the largest fluxes were

associated with relatively short period waves. Accelerations of the order

of several tens of ms-lday -I were inferred. It is not yet certain what role

gravity waves drag may play in the stratosphere, although it could be

important. In this so-called "gap" region for radars, rocket measurements

are still probably the main source of information. Indirect estimates of

both zonal and meridional mean flow accelerations of ~ i ms-lday -i were made

by ECKER_WN and VINCENT (1989).

To date, the only climatology of turbulence motions and dissipation rates in

the 80-100 km region is the study reported by HOCKING (1988) made with the 2

MHz radar at Adelaide. Hocking finds a weak semi-annual variation in

turbulence at heights near 80 km, which like the gravity wave activity at

the same location, minimizes as the equinoxes, although there can be

significant inter-annual variability.

Wavenumber and frequency spectra of atmospheric motions often exhibit a

"universality" of slope and possibly of amplitude (to within a factor of

two). To explain this universality, theories have been developed in terms of

two-dimenslonal turbulence (GAGE, 1979) and in terms of the dispersive

properties of internal gravity waves (VANZANDT, 1982). Recently, there has

been considerable progress in describing the spectra in a manner consistent

with the latter hypothesis. DEWAN and GOOD (1986) and SMITH et al. (1987)

have suggested that the m -3 slope observed for the vertical wavenumber (m)

spectra at high wavenumbers is due to amplitude limits imposed by saturation

of the gravity wave motions. SMITH etal. (1987), for example, show that at
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wavenumbersgreaterthansomecharacteristicscale (m,) the spectra
asymptoteto a valueof -NZ/(6m3),whereN is the Vaisala-Bruntfrequency.
At wavenumberslowerthanm, the slopetendsto zero.A numberof MSTradar
studieshavemadehighheight resolutioninvestigationsof wavenumber
spectrain the loweratmosphere.FRITTSandCHOU(1987),usingthe Poker
Flat MST,foundexcellentagreementwith thesaturationhypothesisand
dominantvertical scales(-l/m,) of about 2 km. Other studies show that the

dominant scale increases monotonically with increasing height to reach

approximate values -15-20 km at the mesopause.

An important consequence of the gravity wave hypothesis of wavenumber and

frequency spectra is that it has been possible to make predictions about the

behaviour of the wave field as the properties of the background medium, such

as stability and wind speed, change. VANZANDT and FRITTS (1989) have

investigated how the distrihution of wave energy changes as a function of m

as the waves propagate into a region where N increases rapidly; they predict

a rapid loss of energy which should be manifested as increased turbulence

dissipation. It will be an important test to search for such effects in

regions where significant height gradients of N often occur, such as at the

tropopause and the high latitude mesopause. Doppler shifting effects become

important when the background wind speed becomes comparable to, or greater

than, the mean horizontal phase speed of the waves (-N/m,). How Doppler

shifting affects both the spectra of horizontal and vertical fluctuations

has been comprehensively investigated by FRITTS and VANZANDT (1987). Their

work shows that great care is required when spectra measured in a ground

based frame are compared with model spectra because energy can be

redistributed to high (ground-based) frequencies. Hence frequency spectra

can show significant departures from the -5/3 slope often invoked for the

spectrum of horizontal motions; the spectrum of vertical motions can be even

more severely affected.

There is an important need for a better understanding of the sources of

gravity waves, for which task the excellent time and height resolution of

MST radars is well suited. BOWHILL and GNANALINGAM (1986) found a good

correlation between wave activity in the lower stratosphere and the height

of cloud tops, which suggested that convection is an important wave source

in topographically flat areas such as Illinois. They found that the levels

of activity in both the stratosphere and mesosphere were also correlated,

which is one of the few direct examples of gravity wave coupling between the

lower and upper atmospheres. However, it is no_ always possible to determine

the cause(s) of enhanced wave activity (e.g. FRITTS and CHOU, 1987).

Certainly, in assembling a source climatology it is necessary to be aware of

the full meteorological situation which pertains during the observations.

For example, UCELLINI and KOCH (1987), in their analysis of strong wave

events recorded by micro-barographs, found that they were confined to a

region on the equatorward side of the exit regions of jet streaks and the

prohable wave source was shear or geostrophic adjustment associated with the

jet. It is therefore possible that two radars located on opposite sides of a

jet-stream axis might measure different levels of wave activity. An

important source of mesoscale variability which radars have difficulty

studying is topography. Aircraft measurements, made in the GASP campaign,

show that topography contributes strongly, especially at horizontal scales

in the 4 to 80 km range (NASTROM et al., 1987). Radars can help asses the

importance of topography as a source of waves and turbulence in the middle

atmosphere if observations made in flat reagions are compared with those

made in topographical rich areas.
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SUMMARY AND RECOMMENDATIONS

A feature of gravity wave and turbulence observations presented at this

workshop was the greater geographical diversity of the measurements. This

was made possible by further radars coming into full-scale operation, such

as the Flatland, and Chung-Li radars. Observations from these, and other

stations, were particularly important in evaluating the significance of
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tropospheric convection and fronts, as well as severe weather systems such

as typhoons, as wave sources. Other relatively new radars including the the

EISCAT VHF radar, the mobile SOUSY radar at Andennes, were able to make use

of the strong scattering at VHF from the summer hlgh-latitude mesopause to

study a number of wave effects, including non--linearities and momentum

fluxes.

The versatility and potential of the Kyoto MU radar was amply demonstrated

by the number of papers devoted to a range of topics. Amongst these were

studies which made use of the rapid beam steering capabilities to measure

momentum fluxes in the troposphere and lower stratosphere. These

measurements, which found significant temporal variability in the fluxes,

were not inconsistent with theoretical expectations that gravity waves

contribute a net drag in the lower stratosphere. Other multi-beam studies

addressed the spatial variability of the wave structures, showing that the

wave field often exhibited a complicated three-dimenslonal structure,

presumably caused by a superposltlon of waves. This latter point illustrates

a problem which has yet to be fully resolved in case studies of waves, viz.

how often are quasl-monochromatlc waves actually observed? In many

situations it is probable that apparently quasi-monochromatic oscillations

which persist for only a few cycles are actually the result of a random

superposition of waves present in rather a wide spectrum.

Progress was apparent in spectral studies, with some previous uncertainties

as to the cause of variations in spectral shape and magnitude in the

frequency domain (especially for vertical motions), being resolved when the

effects of Doppler shifting by the background flow are taken into account

FRITTS and VANZANDT, 1987).

The observations presented at the meeting went some way to addressing some

of the recommendations made by FRITTS (1986) and the needs that he

identified at the bast MST workshop and which bear repetition. (i) The need

for a more diverse geographic coverage, which in turn will provide better

measures of geographic variability of waves and turbulence. (2) What are the

causes and effects of variability, including source effects and filtering?

(3) How important are non-zonally propagating waves, and what is the

importance? (4) What are the consequences of wave saturation? How does it

affect the generation and evolution of turbulence, and what is the role of

the turbulence in diffusion of heat and constituents.?

As a result of the present meeting, it is apparent that rather than making

short term measurements of only a few hours in duration, a number of

stations are now making more or less continuous observations of winds. This

is a highly desirable situation, as it will help in the assessment of

various source mechanisms. What is required is a 'source climatology' for

each station. To achieve this goal will require the temporal variability to

be quantified and the meteorological situations pertaining to be carefully

assessed in order to relate the causes of variability to possible source

mechanisms, such as shear, convection, geostrophic adjustment etc.

On a more pragmatic level, it is now apparent that care is required when

frequency spectra from different sites are to be compared with each other

and with model spectra. It is reGommended that comparisons take place only

after the spectra are 'binned' as a function of the background wind speed.

It is also desirable that spectra should be acGu_u_ated over an appreciable

time, several tens of hours at least, in order to achieve a significant

degree of reliability.
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In order to achieve a full understanding of the role of waves and turbulence

in the middle atmosphere it is desirable that whenever possible radar

measurements be made in conjunction with other techniques, such as Rayleigh

scatter lldars. In this context, there is significant uncertainty about the

conversion factors which relate Doppler velocity spectral widths to

turbulence dissipation rates. To help overcome this deficiency, it is

strongly recommeDded that simultaneous, common-volume intercomparisons

between radar and In sltu (e.g. balloon) measurements of turbulence

intensities and dissipation rates should made wherever possible.



242

RADAR MEASUREMENTS OF ATMOSPHERIC TURBULENCE INTENSITIES

BY BOTH C. 2 AND SPECTRAL WIDTH METHODS

W.K. Hocking and K. Lawry

Department of Physics and Mathematical Physics

University of Adelaide

The VHF radar operated by the University of Adelaide in Australia has been

used to measure turbulent energy dissipation rates in the troposphere and lower

stratosphere. Two quite different techniques have been utilized; one utilizing

the absolute back-scattered power of signals received (GAGE et al. 1980) and

one utilizing the spectral widths of the scatterers (HOCKING, 1983a,b).

The first method requires that the radar be properly callbrated, and this

has been achieved, by using a noise source. As an example, fig. 1 shows the

noise temperature of the sky above the radar over one full 24 hour period. By

comparing temperatures to those recorded by a small array of Yagl antennas, it

has also been possible to place limits on the efficiency of the Co-Co antenna

array used; it turns out to be about 30% - &0% efficient. The calibrations can

then be used to convert the received signal strengths to estimates of Cn 2, as

shown for example in fig. 2. A beam tilt of ii" from vertical was used. These

values are comparable to those of the Platteville radar (NASTROM et al. 1986).

Under certain assumptions, outlined by GAGE et al. (1980) these estimates of

Cn2 may be converted to estimates of turbulent energy dissipation retes, ¢. A

sample is shown in flg. 3.

An alternative method to determine _ is to use the experimentally

determined spectral half-wldth. However this width is due to a combination of

turbulence, and "instrumental" effects llke beam-broadenlng and wlnd-shear

broadening. A sample spectrum, with a Gausslan-flt, is shown in fig. 4. When

the measured spectral half-widths are compared to the "instrumental" half-

widths (fig. 5) it is clear that there is a contribution to the spectral widths

over and above the "instrumental effect". This is in contrast to radars with

wider beams, like the SOUSY radar (eg. HOCKING 1986) for which the major cause

of the observed spectral widths is instrumental. (The Adelaide VHF radar has

a two-way half-power-half-width of i.i°).

Having removed the instrumental contribution, it is possible to use the

residual spectral width to estimate the energy dissipation rates, provided that

the Brunt-Valsala N frequency is known. A sample height profile is shown in

fig. 6 and a sample time series in flg. 7.

Radiosonde data have also been obtained for the period of late October,

and sample profiles of humidity, temperature and Brunt-Valsala frequency are

shown in fig. 8. This profile was used in determining the energy dissipation

rates of figs. 6 and 7, through the relation e -. 0.4 v2.N, v 2 being the mean

square fluctuating velocity.

Each of the two methods of determining the turbulent energy dissipation

rates have inherent problems and the next major step in these analyses is to

make simultaneous measurements of _ by both techniques, in order to compare

them for validity. These comparisons should be available in the near future.
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0. ABSTRACT

The spectral intensity of radar returns from scattering layers in the atmosphere is a powerful tool to
investigate the origing and dynamics of the layers, the scattering mechanisms, and the relations of the
layers to other geophysical and geomagnetic phenomena. The dynamic spectra of PMSE layers as a

function of Doppler frequency, time and altitude of several experiments carried out during summer
of 1988 show an impressive number of phenomena. Wave behaviour, evidenced by quasiperiodic
variation of the Doppler frequency as a function of time, is present almost all the time. Doppler
frequencies equivalent to vertical motions of 10 ms 1 and larger are not rare. Intriguing structures such

as seeming discontinuities of the Doppler frequency and braid-like forms occur also quite frequently.

1.1NTRODUCTION

The accompanying paper in this issue by LA HOZ et al. (1989a) contains a description of the experi-
ments that we carried out during the EISCAT PMSE campaign in the summer of 1988. The data that
we will show in this paper were collected during this campaign. As these results axe preliminary, we

will restrict our presentation mostly to a qualitative description of the data. More elaborated results
and physical interpretations will he presented elsewhere.

The data base we have is relatively small and covers only the day time, mostly between 0900-
1500 UT. However, the amount of new information contained in the data is substantial. Here we have

selected four types of events and we will show illustrations of them in an equal number of sections.
In Section 2 we describe a wave event; in Section 3 the occurrence of a seeming discontinuity in
the vertical velocity of the scattering layers; Section 4 shows fine temporal structure of the vertical
velocity; and in Section 5 we show an event characterised by a sudden broadning of the signal spectra.

2.LARGE AMPLITUDE WAVES

Figure 1 shows a grey-scale power map of the experiment code-named PMSE3C carried out on July
1st. 1988 between 0848 and 1402 UT. In this experiment we attained a range resolution of 300 metres
and covered altitudes between 80 to 92 km. The data shown in the figure have been integrated for 30

seconds. In contrast to Figure 6 of LA HOZ et al. (1989a, this issue), the normalisation here is done
in the conventional way so that relative changes of intensity in time are preserved by the grey code
assignments.

Strong, multiple layers about 1 km in thickness are closely concentrated roughly between 82
and 88 kin. The intensity in these layers reach up to 31 dB above the background noise on the high
side, and down to -6 dB on the low side 1. Often the weak signals reach outside the boundaries of
these very visible layers, sometimes covering even the entire altitude window of the measurement--
although they are not so obvious in this type of figure. Among other features, most of which we
will not touch upon here, there are ondulations and oscillations sometimes with a striking sinusoidal

1 The grey scale upper limit was chosen to cover 95% of the distribution of intensities. Since the lower side of the

dislribution contains also "pure" noise, the lower limit is set at a somewhat smaller value. As a consequence, the

extreme values are outside the given limits of the code. Of course, they are coded at these limit values.
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character. Such is the case of a thin layer on the bottom side between about 1140 and 1210 UT where

a three cycle oscillation is clearly seen.

The top panel of Figure 2 contains an enlarged view of this oscillation. The middle panel contains

the dynamic spectra at an altitude of 83.60 km that cuts approximately through the middle of the

oscillating layer. This altitude is marked by a horizontal line through the top panel. The bottom

panel contains a plot of the SNR in dB at this altitude. The oscillation has a period of 16 minutes

with an altitude amplitude that varies between 1.5 and 3 km and a vertical velocity amplitude from

-12 to +8 ms -] . This oscilladon is preceded by another oscillation that has a longer period of about

40 minutes that lasts at least one period.

The altitude and velocity oscillations are exactly coherent between each other, the velocity laging

the altitude exactly by 90 ° . That is, the maxima and minima of the altitude are simultaneous with

zero crossings of the velocity. What is more, the vertical displacement of the layer during any given

period of time is completely accounted for by the integral of the velocity over that period. This

observatiorv--together with other evidence discussed elsewhere, e.g., a lack of correlation between

spectral width and mean Doppler shift--suggests that the scattering entities are pasive tracers of the

large scale dynamics of the mesosphere.

The shorter period altitude oscillation resembles a sinusoid with a changing amplitude. On the

other hand, the corresponding velocity oscillation has the shape of a triangular oscillation. This mode

of presentation is in a Eulerian coordinate system. That is, we sit at a fixed altitude and measure the

OF POOR QUALITY
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vertical velocity of the layer as it moves by. We have also constructed a Lagrangian coordinate
system (not shown here) where we follow the vertical motion of the layer. In this coordinate system
the velocity oscillation keeps the triangular shape, but the amplitude is from - 16 to + 12 ms-1. These

are rather large vertical velocities, to our knowledge, not seen before. At this stage of our study we
can only speculate about the possibility of this event being a coherent gravity wave in a nonlinear
regime that accounts for the triangular shape. But at the same time we wonder about the absence of
signatures of "wave breaking", given the large amplitudes reached. So much for an illustration of

waves evidenced by polar mesospheric summer echoes.

3.VELOCITY DISCONTINUITIES

On July 6th 1988 we carried out a unique experiment cede-named PMSE3B. It was unique in that
this was the only experiment that achieved an altitude resolution of 150 metres, and in that the phys-
ical conditions seem to have been remarkable. A grey-scale power map is contained in Figure 6 of
LA HOZ et al. (1989a, this issue) which also contains more details on this experiment. Layers with
highly varying structure persist during the whole experiment. The most visible layers maintain high
signal intensities up to 37 dB above the background noise level. Often weak layers encompass the
whole measurement window and possibly reach beyond it 2.

Figure 3 contains dynamic spectra of 5 gates at altitudes between 82.25 and 82.85 kin, and be-

tween times 1100 and 1200 UT. The bottom panel contains plots of the SNR in dB of each of the five
gates. They can be distinguished from each other by the different symbols used in the plots, and they
can be identified with a corresponding dynamic spectrum by an equal symbol shown on the upper left
comer of each spectral panel. The data have been post-integrated for 30 seconds. The normalisation
of the grey code values is done in a way that each spectrum--or "time slice"--is normalised to its
own maximum. The advantage of this normalisation technique is that it produces an image with a
striking high contrast. The lost information regarding the relative variations of the spectral intensities

can be recovered from the SNR plots. The spectral bandwidth of this measurement is :t:17 Hz and
the spectral resolution is 0.52 Hz. These correspond to Doppler velocities of-4-11.4 ms-1 and 0.35
ms -t respectively.

It is clear in the figure that a large, altitude dependent, velocity discontinuity develops at 1109
UT. The velocity in the top panel around this time varies still in a smooth manner. In the next panel
down, the discontinuity has started to develop and the velocity difference between the two branches
is about 2 ms -l , that is, from 6 to 8 ms -I downwards. There is a gradual growth of the discontinuity
as the altitude decreases. The bottom panel shows that the second branch has migrated to the oposite

side of the bandwidth due to harmonic aliasing, a trend that already started in the middle panel. In
the bottom panel the amplitude of the discontinuity is about 5-6 ms -t , that is, from 7 to 12-13 ms -1
downwards.

The proof that this event is authentic is contained in the very description of it as stated above.
This is the smooth and systematic development of the discontinuity as a function of altitude 3 . We
have convinced ourselves that this behaviour cannot be originated by a spurious effect. Events with
similar properties occurred quite frequently during our campaign. Even in this one hour data set of
Figure 3 it is possible to identify several other less dramatic events that share the same characteristics.

The question that arises is: How "discontinuous" can a dicontinuity in Nature be? The data
we have presented has an integration time of 30 seconds. That is, we cannont distinguish temporal
changes that occur within time intervals shorter than 30 seconds. It is plausible, and in fact most

likely, that there is a smooth--albeit rather rapid--transition between the two velocity levels. Then

2 These weak layersare not so obvious in the power maps, l_t they become clearly "visible" in dynamicspectrum
plots shownelsewhere.

3 That ourdata display gradual and systematicchangesas a functionof range-gate number is ademonstration that our
experimental arrangements--specially the coding and decodingprocedures--are functioning exceedingly well.
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the next question is: What physical processes exist, acting under this environment, that may have
time scales that match these observations? R6ttger et al. (1989, this issue, and references therein)
have suggested that the observed discontinuities might be signatures of "wave breaking" events.
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4.FINE STRUCTURE

Figure 4 shows dynamic spectra m three consecutive gates between 84.05 and 84.35 km and between
1000 and 1100 UT. This data were collected during the PMSE3B experiment described in the previous

section. This figure illustrates a rather fine structure of the Doppler velocity in time, frequency and
altitude. Small discontinuities and up-and-down alternations of the Doppler velocity occur from one
integration period to the next. These features, in most cases, show a systematic variation with altitude
similar to the one described in the previous section. One can also identify spectra with multi-modal
characteristics. The latter is more clearly distinguished in Figure 5 that contains a close-up of the

middle panel of Figure 4.

One could be tempted to atribute this fine structure to unavoidable--and undesired--statistical
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fluctuations. However, and again as in the previous section, the systematic behaviour of these struc-
tures, particularly as function of altitude, defeat the proposition that they are just due to statistical
fluctuations. One can also argue that the similarity between consecutive range-gates is an indication
of a correlation between range-gates introduced by the measuring technique. This speculation can

also he discounted on the basis of the real changes that are seen to take place in Doppler velocity
values as a function of altitude, as illustrated so clearly in the large discontinuity shown in Figure 3.

5.SPECTRAL WIDTH

Figure 6 contains again dynamic specu'a at three altitudes, 84.20 to 84.80 km, between times 1230
and 1330 UT. This experiment was a test of the spatial interferometer technique carried out on July
5th 1988. A comprehensive report on this experiment and the results pertaining to this technique can
be found in the paper by LA HOZ et al. (1989b, this issue).

At 1255 UT there is a sudden increase of the scattered power in the two lower altitudes accompa-
nied by a simultaneous widening of the spectral widths. The power in the bottom panel, as measured

by the SNR in dB, increases from about 4 dB to 24 dB within about one minute. A similar variation,
although less intense, occurs also in the middle panel. The corresponding variations in the top panel
do not seem to bear any appreciable correlation to the other two panels.

If the irregularities that cause the scattering are produced by turbulence---and even if they are
not, but arc passively imbeded in a turbulent environment--we expect them to be subject to the
random motions produced by the turbulence. It is also clear that as the level of turbulence increases,
the velocity fluctuations of the scattering irregularities will increase. Thus, the spectral width of
the scattered signals will widen as the turbulence level increases. It is then conceivable that this
event is a signature of a sudden increase of the turbulence level. We would expect to see also a well

defined relationship between the spectral widths and the total scattered power. However, a counter-
example is contained in Figure 7 in the paper by LA HOZ et ',d. (1989, this issue) which contains
another event where the spectrum suddenly and dramatically widens without being accompanied by
correlated variations in the scattered power. Within this--admittedly as yet--superficial account, the
evidence of a clear correlation between scattered power and spectral width has been elusive.

6. IN LIEU OF A CONCLUSION

Perhaps it will later turn out, after resolutions to these puzzles are found, that the following verse due
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to Lewis E RICHARDSON (1922) is quite relevant to paraphrase in this context:

Big whaves have little whaves,

Which feed on their velocity;

And little whaves have lesser whaves,

And so on to viscosity.

(or "so on to turbulence" first?.., or were they already "whorls"?... or... )
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1 DESCRIPTION OF MU RADAR OBSERVATIONS

Gravity waves excited in the lower atmosphere dissipate in the mesosphere through dy-

namical or convective instabilities. As a result, they transport momentum flux and energy
from the lower atmosphere to upper middle atmosphere, and accelerate/decelerate the

general circulation Ie.g., Lindzen, 1981]. Radar observations have been continued in order
to clarify the behavior of gravity waves in the mesosphere. ]e.g, Meek et al., 1985; Vincent

and Fritts, 1987; Yamamoto etal., 1986, 1987]
This paper is concerned with presentations of 19-day observations of gravity waves

in the mesosphere carried out during daylight hours (0800-1600 LT) on 13-3i October
1986 with the MU radar in Shigaraki (35°N, 136°E), Japan.

The antenna beam of the MU radar was steered every inter-pulse period into the
vertical direction and four oblique beam directions aligned north, east, south and west at

a zenith angle of 10°. The transmitted pulse was phase-modulated by a 16-bit comple-
mentary code with a sub-pulse width of 4 #s, which corresponds to the height resolution
of 600 m. Data are collected at 60-90 km by oversampling every 300 m with a time res-
olution of 145 and 60 s for observations on 13-17 and 18-31 October, 1986, respectively.

In this study, we have used wind velocity profiles determined at about 65-85 km where

turbulent scattering is dominant.

2 QUASI-MONOCHROMATIC GRAVITY WAVES

Wind profiles a,e subsequently averaged for 2 hours by shifting the areraging period

by one hour. The vertical profiles of meso-scale wind fluctuations in the mesosphere
can be recognized as a superposition of many gravity waves with various vertical scales

and frequencies. However, evident quasi-monochromatic gravity waves with a dominant
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Figure 1: Distribution of horizontal propagation direction of gravity waves. A full and

open circles correspond to phase and group velocities determined by using dispersion
relation in no background mean wind condition. Only propagation direction is indicated

by a dashed line for two cases, since vertical wavelength was not determined.

vertical scale ranging fi'om 5 to 15 km were frequently detected. They mostly show

downward phase progression, indicating an upward energy transportation. Amplitudes of
the quasi-monochromatic gravity waves ranged up to 20-30 m/s, and were generally laa'ger
for the northward component than the eastward component. A dominant wave component

in the profile can be extracted as a quasi-monochromatic wave by applying a band-pass
filter with lower and higher cutoffs at 3-9 and 12-27 km, respectively, dcpendiug on

the dominant vertical wavelengths. By assuming a linear dispersion relation with no
background mean winds [Hirota and Niki, 1985], the horizontal propagation directiozl

and intrinsic wave period of quasi-monochromatic gravity waves were determined for 16
cases out of 19 days of observations.

Fig. 1 shows distribution of horizontal phase and group velocities, where the grot,1)

velocity is estimated by assuming a constant background temperature profile. Fig. 1
indicates that all of gravity wave propagated in the equatorward direction. For 7 cases
quasi-monochromatic gravity waves propagated in a direction between south and 30° east
fi'om south.

On the average, it can be concluded that the preferential propagation direction of the

gravity waves in this observation period is the south south-east direction. The amplitudcs
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of the horizontal phase velocity tend to become larger, when the gravity waves propagated
to the south-east direction, and smaller ill the westward direction. The mean mnplitude

of tile horizontal phase velocity averaged for 14 cascs was 31.6 m/s.
The mean vertical l)hase velocity for these qu&si-mouochromatic gravity waves was

-0.28 m/s, indicating upward energy propagation. Intrinsic wave periods mostly ranged
from 8 to 11 hours with a meaa: value of 8.6 hours.

3 MOMENTUM FLUX

In this section we present a profile of wave-induced upward flux of horizontal momentum

determilmd by using the beam-pair method [Vincent and Reid, 1983]. First, a linear
trend is subtracted fl'om a time series of radial wiad velocities collected for 8 hours ia
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each range gate. The variance of radial wind fluctuations with periods ranging fl'om 10

rain to 8 hours is calculated independently at each height on each day, and are further

averaged over 19 days of observations.
Both meridional and zonal vm'iance increases with altitudes from 2.5 (m/s) 2 near

65 km to 4.0 (m/s) _ at 75 km, although considerable height variations are recognized.

When the kinetic energy is conserved, the variance must increase with a scale height
of atmospheric density (about 9 km). However, the observed increase of variauce was

obviously smaller than the scale height, and therefore, the wave energy was dissipated in
the course of upward energy propagation.

Azimuthal anisotropy of the variance was recognized such that the northward and
westward components were generally larger for the meridional and zonal components,

respectively.
Fig. 2 shows vertical profile of upward flux of the horizontal momentum flux deter-

mined from the MU radar observations, where atmospheric density istaken from CIRA

1972 model. Mean gradient of the eastward momentum flux, i.e. mean body force, is
estimated as -5.1 m/s/day in the altitude range of 65-75 km by assuming the air density
of 8.2x10 -_ at 70 kin. The northward acceleration is determined as 4.0 m/s/day.
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1 Introduction

VHF Doppler radar is one of the most powerful tools to measure the small-scale phenomena,

such as gravity waves, in the troposphere and lower stratosphere. For examining effects of the

gravity waves on the large-scale circulation and/or their origins, it is important to estimate

parameters characterizing the horizontal structure of gravity waves. In many cases, however,

their horizontal structure has been inferred from vertical structure with the aid of theoretical

consideration, e.g. the dispersion relation, because the number of beams directed for one

measurement is limited by the usual radar system. The MU radar has a unique ability to

measure radial velocities almost simultaneously with up to 16 beam directions, which is suitable

for the detection of the horizontal structure. In the present study, therefore, an attempt was

made to use the multi-beam technique for investigating the nature of wind fluctuations with

small horizontal scales.

2 Observation

The wind measurements in the troposphere and lower stratosphere were carried out for 47.5

hours on 22-24 in January 1986. The antenna beam was pointed to 15 directions switched

alternately from one pulse to another during the observation. Twelve beams out of 15 were

directed in the sector area from 30 ° west of the zenith to 30 ° east so as to scan the wind

field zonally. Zenith angles smaller than I0 ° were not chosen in order to avoid the effect of

"aspect sensitivity" (Tsuda et al., 1986). Since the MU radar has the beam width of 3.6 °,

independent data are obtained for each beam position at the 4°'s interval of the zenith angle in

each direction. Two beams were tilted to north and south by 14 ° from the zenith to measure

the meridional wind, and the remaining beam was directed vertically to measure the vertical

velocity directly. The height range for the observation is 2.4-24.6 km with a resolution of 300

m along the radar beam. The time resolution is about 7 minutes because of the integration of

weak echoes. During the observation, a typical mid-winter pattern with a strong subtropical

jet was situated synoptically over Japan. No convective clouds were observed above the MU

radar site.

3 Data Analysis

The radial velocity Ve(z, t) is expressed as

Vo(z,t) = ue(z,t) . sin0 + we(z,t) . cos0, (1)

where 0 is the zenith angle of the beam, z is the altitude, t is the time, u and w are the

horizontal and vertical components of wind, respectively.
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Figure 1: w-component of wind measured with the vertical beam during the whole observation

period. Data were lowpass-filtered with a cutoff length of 1 hour. The contour interval is 0.5

ms -1

Usually the horizontal and vertical components are obtained using two beams with equal

and opposite angles +0 around the zenith, in such a way as,

[u(z,t)]0 = Vo(z,t) - v_o(z,t)
2 sin 0 (2)

It is noted that we assume homogeneity of the wind field over the two symmetrical beam

positions in (2).

On the other hand, with more relaxed assumption that wind field is uniform over each

neighboring two beams with zenith angles of 01 and 02 out of the thirteen scanned zonally, we
have

u(z,t ; 01_) = v._(_.O_o.o_-v_(_,O_,_o, ]_n(O]-0_

w(z, t • 01_) v., (_,O_-_-v.=(.,o.;._, j , (3)
' - _in(0_ -0_)

where 01_ = (01 + 0_)/2. This method provides the horizontal variation of u and w.

Figure 1 shows the w-component of wind measure by the vertical beam through the whole

observation period. The regions of the velocity whose absolute value is more than 0.5 m s -_,

were hatched. Conspicuous strong oscillations with large vertical scale and with 1-2 hours

period are found in the two rectangles of the figure. According to the spectral analysis,

the oscillations appear mainly above the height of the subtropical jet (_ 12 kin). This study

analyzed the two distinct events which are referred to as 322 for the first appearing on the 22rid,

and .124 for the second on the 24th, respectively. Analyzed data were the wind components

having periods of 1-2.5 hours and vertical scales larger than 1.5 kin.
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Figure 2: Vertical time-section of u, w, and v for J22. The contour intervals are 1 ms -t for u

and v, and 0.2 ms -1 for w.

4 Vertical time-section

Each component for J22 is represented in Fig. 2. The zonal and meridional components, u

and v, were calculated from (2), as usually employed. For w-component we used the data

obtained by the vertical beam. It is found that the amplitude of w is about 2 ms -1 at the

maximum, and the large amplitude continues only for several hours. Then the two events are

further divided into the first and second halves, which are referred to as J22-a and J22-b for

J22 as shown in Fig. 2, and J24-a and J24-b for J24. The period of the oscillation for each

event is 1-1.5 hours.

The phase differences between wind components are important parameters to identify

the oscillations. Judged from the short period, these oscillations are likely to be due to

internal gravity waves. Internal gravity waves must have the phase difference of 0 or 180

degrees between horizontal and vertical components. In Fig. 2, however, the phase differences

between u and w and between v and w appear almost 90 degrees. This might be caused by the

impropriety of the assumption used in (2) that the wind field is uniform over height positions

measured by symmetrical two beams, in the case of the waves having a small horizontal scale.

5 Horizontal time-section

In order to examine the zonal structure, we made horizontal time-section from 13 radial

velocities in the zonal scanned region using (3) as shown in Fig. 3. Continuous monochromatic

wavelike phases are found, migrating westward for J22-a and eastward for J22-b. However the

magnitude of w is very large compared with that obtained by the vertical beam directly. Then

we simulated the "observation" of u and w using (3) with the assumption that the wind field

has a small monochromatic wavelike structure. As a result, it is found that the "observed"

wave amplitude and phase are not represented correctly, but the zonal wavelength and period

are well reproduced, as well as the sense of the phase difference between u and w. Therefore

the zonal wavelength A_ for each event can be estimated from the horizontal time-section as
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Figure 3: Horizontal time-section of u and w at a height of 15.9 km for J22. The contour

intervals are 2 ms -1 for u and 0.5 ms -1 for w.

5-25 kin.

6 Fitting analysis

In order to examine the phase difference between u and w, we fit the radial velocities assuming

the wind field with a monochromatic wavelike structure by the least squares method, which

can represent phases exactly. Thirtecn radial velocities measured by the zonal scan of the

beam at each time and height are used for fitting to the shape of

2_r . 2r

Vo, = uosin(-£--xi + _,,). sinOi + Wo sm(-i---xi + _o_0). cos Oi, (4)
_x _z

where xl = z. tan Oi. In order to decrease nonlinearity of the fitting function, unknown param-

eters are reduced to four: Uo, w0, _,, and _o_. Fitting is made by changing A_ continuously

near the values estimated from the horizontal time-sections, so as to find the Ax having the

minimum fitting residual. It is noted that this method of the fitting analyses is suitable for

transient waves since the assumed structure (4) has no time parameters.

Figure 4 shows the time averaged standard deviation (S.D., the square root of the residual)

as a function of the zonal wave length for tile case of J22-a. The zonal wavelength A; corre-

sponding to the minimum value of S,D, values is found for each profile. This is the same for

the other cases, indicating that the oscillations are zonally sinusoidal, It is noteworthy that

A_ changes near a height of 16.8 km in Fig. 4. It follows that the oscillation is composed of at

least 2 different waves in height. This is also the case with J24-b.

The histograms of the phase difference, A_ = _= - _, associated with almost the same

zonal wavelength A_ for each event are shown in Fig. 5. The distributions of A_ for all events

have peaks near 0 or 180 degrees, except for J22-a at a height range of 16.8 17.4 kin. This is

consistent with the theoretical characteristics of gravity waves.
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In order to confirm that the oscillations are also sinusoidal in time, we made another fitting

analysis which takes a time parameter, i.e., the period, into consideration but not the wave

transiency. The obtained parameters were consistent with the previous analyses. Through the

two types of the fitting analysis, we confirm that the oscillations are due to internal gravity

waves,

7 Discussion

The zonal phase velocity estimated for each event from the zonal wavelength and period is 1-5

ms -1, which is very small compared with the background wind (_ 50 ms-l). This suggests

that the waves are almost at rest relative to the ground as in the case of mountain waves.

However, since no considerable high mountains exist near the radar site, and the oscillations

appeared distinctly in the lower stratosphere, it is difficult to identify them as mountain waves.

The strong vertical disturbances have often appeared in the observations using VHF radars

(e.g. Ecklund et al., 1981, 1982, 1985). Most of those are not regarded as simple oscillations

having a single time-frequency as the case of this study, but as variations with over a wide

range of frequency. The characteristics, the frequency of occurrence, the origin, the effect on

the mean flow, and the seasonal variation are all the remaining and interesting subjects to be

examined in detail about these disturbances. Improvement and continuation of the multi-beam

observation promise to be of great importance.

The original paper of this study is published in the December issue of J. Meteor. Sci. Japan,

1988.
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ABSTRACT

Polar mesosphere summer echoes observed with the EISCAT 224-MHz radar fre-
quently exhibit significant discontinuous offsets or jumps in the Doppler shift.
We explain these jumps to be caused by a llfting of partially or anisotroptcally
scattering layer. These can result from gravity waves, which also can be steep-
ened or tilted. We notice frequently that these steepened wave structures do not
obviously break up into turbulence.

INTRODUCTION

It is usually assumed that gravity waves can gain such large amplitudes in the
mesosphere that they are saturated and break into turbulence (e.g., FRITTS,
1984; FRITTS and RASTOGI, 1985). MST radars are quite suitable tools to study
these dynamic effects (e.g., ROTTGER, 1987) and turbulence structures were
observed with MST radar in the mesosphere (e.g., KLOSTERNEYER and ROSTER, 1984;
REID et al., 1987). MOBBS (1985) and WEINSTOCK (1986, 1987) computed the shape
of gravity waves which had increased in amplitude close to the breaking level
and found that the wave shape can be tilted or steepened during the saturation
process. After the EISCAT VHF radar observed polar mesosphere summer echoes
(HOPPE et el., 1988), the high spectral resolution program applied by ROTTGER et
al. (1988) allowed to study details of the Doppler spectra which showed charac-
teristics of steepened waves.

BRIEF DESCRIPTION OF THE EXPERIMENT

The echoes detected by the EISCAT 224-NHz radar could not be explained by the
common incoherent scatter mechanism, but were assumed to be related to those
echoes which were earlier observed with the 50-NHz MST radars (e.g.,CZECHOWSKY
and ROSTER, 1985). Since it was noticed that these echoes detected on 224 MHz
were very dynamic and non-stationary, a special radar program was developed to
study detatls of their spectra with a much htgher frequency resolution than was
appllcable with the original radar program. The program applied the pulse-to-

pulse mode and Barker coding with 1.05 km altitude resolution. Autocorrelatlon
functions were computed on-line allowing for a frequency resolution of 0.42 Hz,
these were averaged over 5 sac and dumped on tape. The receiver gain was opti-
mized to cope with the very strong signal variations. More details of this
particular program and general results can be found in (ROTTGER et el., 1988,
and ROTTGER and LA HOZ, 1989). Here we will concentrate on particular features
of the spectra which we could not discuss In detail so far. We will also include
more recent results which were obtained in summer 1988 after the complementary
coding scheme had been introduced to the EISCAT VHF radar. During both summers
the EISCAT VHF radar was operated in the 224 MHz band with about 1.5 MW peak
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power and the 40m x 120 m cylindrical dlsh antenna for transmlsslon. The corre-

spondlng beam wldths are 1.6" by 0.6" in the mrldlonal and zonal dlrectlon,

respectlvaly. During the experiments, whlch are reported here, the antenna beam

was pointed vertlcally.

RESULTS OF SPECTRAL MEASUREMENTS

Spectrograms or dynamic spectra of Polar Mesosphere _ummer Echoes (PMSE) allow

to study in quite a detall the flne-structure of the radar returns and tholr

relation to refractlvlty structures, turbulence and gravity waves. Spectrograms

of PHSE observed on 224 MHz were published by ROTTGER et al. (1988) and ROTTGER

and LA HOZ (1989), which show the variability of the spectral width, the spec-

tral offset and occasionally a splitting. We notice in the examples shown in

Figures 2 and 3 of ROTTGER et el. (1988) that periodic man velocity oscillation

related to gravity waves are quite common. It was very evident also, that these

oscillations are quite frequently non-sinusoldal, but trlangular-shaped or

sawtooth-like. It was even noticed sonmtlms that the complete spectrum is sud-

denly (within 10 sec or so) shifted by more than the width of the spectrum. This

particular feature was first observed in summer 1987 and again was evidently

detected in summer 1988 with completely different radar programs. We will here

discuss this feature in more detail.
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We show in Fig. I a spectrogram with the highest time resolution achievable
during the sum_r 1987 operations. It is an enlargement of the spectrogram of

Fig. 3 in ROTTGER et el. (1988), highlighting the particular event which occur-
red at 81,7 km altitude around 21:58 UT on 2 July 1987. This was the first time

when definitely a spectral Jump was observed, In the displays of the dynamic
spectra as shown in Fig, 1 the amplitude in each frequency bin Is plotted in a
grey scale. The amplitude is normalised to the maximum amplitude in the spec-
trum. Each vertical stripe thus displays one normalised spectrum for a certain

time period. The sequence of many of these spectral stripes forms a dynamic

spectrum for one range gate. Because the spectra are normalised, we also plotted
the average amplitude in the spectral stripes in a logarithmic grey scale at the

upper and lower margins of the stripes. Spectrograms of two adjacent range gates
with 1.05 km resolution are displayed.

What is very interesting to notice in FIg. I is the fact, that the signal with
the gentle increase in Doppler frequency at the altitude gate z = 81.7 km sud-

denly disappears after it had increased in ampiitude. After about I minute a

very weak signal recurred in the same altitude gate with small negative Doppler
shift, and then increased in amplitude and Doppler frequency to again positive

Doppler shift. Whereas during the last part of the display the spectra are

fairly similar in both adjacent gates, this is not at all the case at the begin-
ning, where we notice a very narrow and high-amplitude spectrum in the 81.7 km

gate and a very weak and broad spectrum in the 80.55 km altitude gate. During
the first two minutes of this display, thus. the scattering structure must have

been very different over a vertical distance of I km. This was pointed out

already in the preceding paper by ROTTGER et el. (1988). Since the maximum
positive frequency off-set in the first part of the display is only one third of

the Nyquist frequency and the signal recurred at a negative Doppler shift, which

is only about one fourth of the Nyquist frequency, we have to exclude aliasing
causing this frequency change. Similar frequency changes did not occur in other

range gates, and we therefore can exclude also a change of an oscillator fre-
Quency to cause this effect. We thus, suggest that this is a real shift in

frequency, which we will call a "jump" or "bounce".

EISCAT VHF Radar 30 June 1988

......................... ,.,._.* ..... ° o ..... o ° .......

..........i..........: :i ...............

..........!!i: i :;iiiiiX!!   iI !::iij! !iiii i:l

, t,i'. "il '!'i!:'""li/

1.... : ......,....i ::iii ...................... /
10:20 UT 10:30

Fig, 2 Spectrogram of PMSE observed with the EISCAT 224-MHz radar in
summer 1988 with altitude resolution of 300 m (see LA HOZ et el.,
1989, for details).
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Fig. 2 shows another example of a spectrogram or dynamic spectrum of Pt4SE,

recorded in summer 1988 with 300 m altitude resolution. Frequency shifts or

jumps are deflnJte|y occurring at 10:15:34 UT and 10:25:36 UT on 30 June 1988.

Since the data for this spectrogram were recorded wtth a completely different

data acquisition routine, we thus are even more confident that an instrumental

or software effect Is not misleading us in our interpretations. The latter Is

further proven by noticlng the characteristic frequency jumps in the series of

spectrograms by LA HOZ et el. (1989), whtch were obtained during another differ-

ent observation period and were analyzed by a different software package. We

have collected many more examples of these characteristic 3umps and non-linear

steepened oscillations, which we w111 publish elsewhere.
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Ftg. 3 Spectrogram and amplitude time series recorded on 6 July 1987.

EISCAT VHF RAOAr _ July 1987
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Ftg. 4 Series of 10-sec averages of spectra (displayed in linear

amplitude) observed on 6 July 1987 over a 2.5 min time period in the

altitude ranges 83.80, 84.85 and 85.90 km.
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An earlier example of a dynamic spectrum, recorded on 6 July 1987, ls shown in
Fig. 3, together with the temporal development of the echo amplitude. A jump in
Doppler frequency Is very apparent at 10:22 UT, - the spectral amplitude and the
spectrum width, however do not change. In Flg. 4 the temporal aevelopment of

lO-sec averages of spectra ls shown In the conventional display. It becomes evi-
dently clear from this display that the total spectrum in the altitude gate
84.85 km was shifted wlthln 10 seconds without leaving a remnant behind. Checks

of spectra in the adjacent altitude gates 85.9 km and 83.8 km shows that there

Is very little spill-over between the altitude gates and that there are com-
pletely different and isolated phenomena happening over vertlcal distances of

one kilometer. Another example of jump Is presented in Fig. 5, which also shows
the event isolated in one altitude gate. This Figure also shows that the jump

occurs within the very short time scale of 5 seconds. We find that the Jump or
the frequency off-set could be immediate (within seconds) or a|so overlapping,

as can be seen in Fig. 8. It Is a very clear prove from this Figure that alias-

ing does not cause the frequency lumps. This Figure also shows the distinct
Intermittency of the echo amplltude within the altltude range of I km.
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Fig. 5 Spectrograms of adjacent range gates showing a frequency jump
in only one altitude gate. There Is a weak spill-over of the echo
from range gate 83.80 km to 82.75 km at about 21:47 UT, resulting in
a double structure in the lower range gate. The steady Doppler shift

in range gate 82.75 km in contrast to the jump in range gate 83.80 km
can be taken as a proof that frequency jumps are not of instrumental

origin.
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Fig.6 Spectrogram and amplitude time series showing the burst-like

temporal variability and an overlapping qrecluencv jump at 11:29 UT.

The consistency of these described observations done with independent radar

programs and the convlnclng results, which we have presented so far, place a

high confidence on the fact that these "3umDs" are due to a real phenomenon and

not instrumental. How can we explain these observations?

MODEL COMPUTATIONS

We could envisage a model as shown in the upper panel of Fig. 7, where a

partially reflecting surface is undulated by a Gaussian shaPe bump, The layer or

surface is assumed to move horizontally through the radar beam. Radar rays,

which are reflected under perpendicular conditions from the surface reach the

receiver and add up according to the different phase paths. The phase paths will

change because the reflection point moves and there can be more than one reflec-

tion point at a time with different radial velocity, causing a superposition of

different Doppler shifts. The corresponding amplitude and phase variatlon of the

received slgnal is shown in the lower two panels of Fig. 7 as a function of

time. These temporal variations are Fourier analyzed and yleld the spectra of

Fig. 8. The horizontal width and the vertical perturbation amplitude of the bump

yielding these spectra ls 2000 m and 300 m, respectively. The bump is assumed to

be at 85 km altitude, and the antenna beam width is 1.50 for the upper panel and

3 o for the lower panel spectrum of Fig. 8, respectively, The horizontal speed U0

of the bump yields a radial velocity of the reflection points which cause the

varying Doppler shift seen in the model spectra, The total width of the spectra

displays in Fig. 8 corresponds to a radial velocity of O.15 Up. We clearly

notlce that the sPectral features, which we do observe, can be simulated by this

model. Note that this model assumes partial reflection, characterised by a

strong asPect sensitivity and the suPerposltion of a few rays, but it would not

work for isotropic scattering. However, a thin and highly anisotropic scattering

laver, having the lifted bump shape and moving horizontally, could also cause

these spectra.

v,, ...... 4_ PAGE IS

OF POOR QUALITY
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Fig.7 Model of a Gausslan shape bump of a thin layer (upper panel)

causing amplitude and phase variations as shown in the lower two

panels, when the layer moves horizontally.
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Fig.8 Doppler spectra computed from the model structure shown in

Fig. 7, The upper spectrum is for a 1.5 ° wide antenna beam and the

lower for a 30 wide beam.
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One may not accept that partial reflection, as assumed in the latter model,

would be possible because of the stringent crlterie which are necessary for
reflection, namely the stratification of the reflecting surface in the meso-
sphere. This model still would be applicable, however, for highly antsotropic
turbulence, which we cannot yet prove to be observed on 224 MHz. We then have to
enautre about another reflecttvity structure which could cause these structures
and how the physical mechanism could be behind these peculiar observations of
frequency 3umps. If we may not be convinced that a specular reflector or highly
anisotropic thin scattering layer as used in the model is existent when we see
these 3umps, another model needs to be invoked. We now describe a model which
works for scattering as well as reflection and offers a more generally accep-
table explanation of these sudden frequency 3umps. We can propose that the 3umps
and bounces could also be a signature of "Wave steepening or wave tilting"
(e.g., Mobbs, 1985; Weinstock, 1986, 1987), wnlch occurs when the amplitude of
gravity waves increases but breaking into turbulence does not immediately take
place. The latter apparently ls not observed in our data, slnce it would mean
that the spectrum has to wlden substantially when 3umps occur and the echo
amplitude would have to increase when scatter from the enhanced turbulence would
cause the echoes.
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Fig.9 Model surfaces of a thin layer of turbulence or discontinuity in
a Kelvln-Helmholtz-Instablllty (left panels) as well as In a steep-

ened wave (right panels) and the corresponding relative velocities,

i.e. Doppler shifts, shown In the lower panels.
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When we consider that the mean DOODler shift usually is due to a vertical bulk

motion of a thln layer of scatterers, the spectrum shift is directly given by
the derivative of the spatial {radial = quasi-vertical} displacement of the
scattering or reflecting layer. The spectral shift is deduced from our spectro-
grams and we thus can determine the radial displacement. For a purely sinusoidal
wave, the displacement then would just be 90 degrees out of phase to the Doppler
shift. However, for non-slnusoidal oscillations we obtain a quite different
display as shown in the two models of Fig. 9. For the left-hand panels in Fig. 9
the model computations of Kelvin-Helmholtz-Instsbillty of Frltts (1984) are
reproduced (his Fig. 6) and converted into relative velocity (i.e. mean Doppler
shift) as function of time, We have assumed in the following model that only a
thin scattering layer or reflecting discontinuity exists in the KHI structure.

Enhanced turbulence should be observed oarticularIv around the relative time

scale 30-40. We should then see an increase in spectrum width and echo ampli-
tude, which is not so evident from our observations. We also would need to see a
sudden and short drop of the Doppler frequency with Quick return to about the
same Doppler velocity. These evidences could only be very occasionally confirmed
by our observations.

For the right-hand side panels the computations of MOBBS (1985) and WEINSTOCK

(1986) are reproduced, which are for steepened waves. We again assume that only
a thin reflecting or scattering layer exists in the wave structure. The repro-

duction of these computations then fits well with the observed frequency jumos,

which take olace within a very short time interval as comoared to the wave
period. According to Weinstock (personal communication), turbulence does not

necessarily occur when the waves are steepened, whlch is conslstent with our

observations. We therefore assume that the frequency jumps observed durlng PMSE
conditlons with the EISCAT 224 MHz radar can also be an indication for steepen-

ing and tilting of gravity waves in the mesosphere. It is to be noted that the
particular features of steepened wave structures should be obtainable also with

the model computations corresponding to Figures ? and 8. Then the Gaussian shape

bump needs to be replaced by a steepened wave structure. Such simulations should
be done in future.

One may argue why these Jumps and other peculiarities in the spectra had not

been reported to be seen so far wlth other radars. An explanation is that only
the special kind of hlgh-resolution spectrograms which we have chosen easily let

detect such events. Another explanation could be that only a narrow beam, such

as the about I degree wide beam of the EISCAT VHF radar, could resolve these
structures. The rapid temporal changes, with time scales of seconds, let assume

that there is a very distinct horizontal intermlttency of the structures over
less than a very few kilometers. A wide beam, say several degrees wide, would
smear out these fine structures and therefore would seldom detect these featur-
es, which we regard as a typical characteristics of polar mesosphere summer
echoes.

CONSEQUENCES

Let us now consider some data analysis consequences resulting from these jumps
in the mean Doppler frequency, which are related to the steepening of gravity
waves. When one deduces the estimates of the first three moments of the Doppler
spectrum for averages over time intervals which are longer than the time step
during which the spectrum jumps, one inevitably will smooth out the jump and not

clearly see the steepened wave. More detrimental: the spectrum width which one
would deduce will erroneously be widened and would more reflect the magnitude of

the frequency jump than the real width of the spectrum. The steepening of waves

preferentially occurs in certain phases of the waves, namely in the down-slope
of the original non-steepened wave. When integratlng too lung one thus would
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flnd the spectrum to widen tn these certain phases. It ls suspected that the
maxlmom sDectrom width wlll be seen close to the oscillation phase where rapid

velocity changes occur. Only when the integration tlme Is as short as the time
It takes for the sl_ectrum to 3ump, namely about ten seconds or less, one would
deduce a more correct estimate of the spectrum width. We thus argue that longer
integration times than some ten seconds could easily result Ina conclusion that
the spectrum widens In certain oscillation phases and one could erroneously
suggest that the widening is due to enhanced turbulence. A similar result of
erroneous spectrum width as well as Doppler shi_t could evolve If the Doppler
frequency resolution is not sufficient to resolve the jumps. To avoid such
possibilities of errors and misinterpretations we favour the application of
htgh-sbectral resolution data-taking procedures and to check the data by first
dlsglaylng dynamic spectra wlth sufflclent tlme and freauency resolution. Thls
word of caution should be regarded also when one would tntend to deduce the eddy
diffusion coefficient from the wldth of the spectrum; even for very narrow beam
antennas and narrow range gates (as were applied in the EISCAT observations of
summer 1988) the eddy diffusion coefficients are likely overestimated because of
the elucidated effect.
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The Chung-Li VHF radar has been in operation since 1986. During this period, the radar
has been used to observe the dynamics of the troposphere and the lower stratosphere, especially
the waves. In this paper some typical examples of the observed wave phenomena will be
presented and discussed.

(i) Mountain Waves
As an example of mountain waves, Figure 1 shows a hodograph of the horizontal wind on

June 7, 1986, observed by the Chung-Li VHF radar. The wind was obtained by averaging the
whole data set which was approximately three hours. The wind increased in general from about 5
m/s at 2 km height to about 20 m/s at 10 km. The magnitude of the fluctuations was approximately
2.5 m/s and the vertical wavelength was about 3 kin. We note the clockwise rotation of the wind
vector. It turns out that such vertical variations of the wind are observed quite often at Chung-Li,
for both westerlies and easterlies. To understand the phenomenon, we note that Chung-Li is
located in the northern part of Taiwan. Approximately 30 km to the west of the radar is the ocean.
The Central Mountain Range of the island is about 25 km to the east with a rather abrupt rise to
peaks as high as 3000 to 3500 meters. Therefore, it is expected that lee waves will be generated
when winds are blowing from the east. As for mountain waves observed at Chung-Li when the
wind is from the west, we note that a recent paper by BACMEISTER and SCHOEBERL (1989)
has shown that nonlinear processes may cause the orographically generated stationary waves to
break and set up waves upstream. Since Chung-Li is quite close to the mountain, it is likely to
observe such waves there if indeed they are generated. This might be the reason why mountain
waves are observed in Chung-Li for both easterlies and westerlies.

(ii) Focusing by Layered Structures Modulated by Gravity Waves
Layered structures are also seen very often at Chung-Li. At times such layers are

modulated by short-period gravity waves. When this happens the modulations of the layers may
sometimes be sufficiently strong to effectively focus and defocus the radar beam causing periodic
fluctuations in received echo power. The modulations are caused by the displacement of the layer
as the wave propagates through. Therefore, if indeed this focusing mechanism is operative, one
should also see simultaneous oscillations in the vertical velocity. As a matter of fact, since the
displacement and the velocity are out of phase by 90 deg, one should expect to see maximum
power occurring when vertical velocity goes through zero. GAGE et al. (1981) presented an
example of this phenomenon for layers at tropopause height. At Chung-Li this phenomenon has
been observed also on layers at lower tropospheric heights. Figure 2 shows such an example.
The data were taken on June 9, 1986. The power and vertical velocity shown in Figure 2a are for
a layer at 5 km height. The period of the wave was approximately 8 min. We note the time shift
between the maxima of the power and the velocity. Figure 2b shows the correlation function of the
two time series. The maximum correlation of 0.8 is found at the time lag of 2 min with vertical
velocity leading the power. This is the 90 deg phase difference mentioned above.

(iii) Kelvin-Helmholtz Instability
It is well known that strong wind shears can generate Kelvin-Helmholtz instability (KHI)

in the atmosphere which can be observed by VHF radar (KLOSTERMEYER and RUSTER,
1980). The KHI occurs at a height where the local Richardson number is smaller than 0.25. One
of the main features of the KHI-generated waves is the phase jump at the height where the
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Figure 1. Hodograph of horizontal wind on June 7, 1986, observed by the Chung-Li radar.
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Figure 2. (a) Time series for echo power and vertical velocity at 5 kin height observed by the

Chung-Li radar on June 9, 1986. (b) Correlation function between vertical velocity and echo

power.
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instability is originated (KLOSTERMEYER and ROSTER, 1980). In the following we discuss

such a case observed in the troposphere at Chung-Li. Figure 3 shows the vertical velocity
observed on June 9, 1986. The original sample period was 25.6 s. A 26-point running mean was

applied to smooth the data. It is quite apparent that wave activities existed during the period.
Spectral analysis identified a dominant component of 15.8 min. The phase of this wave was
measured by correlating a cosine function with variable phase with the data at each height. Figure
4a shows the height profile of the computed phase. We note the jump of approximately 100 deg at
about 7 km height. Figure 4b shows the Richardson number as a function of height calculated

using the data from the radiosonde at Pan Chiao, which is approximately 25 km northeast of
Chung-Li. We note that a minimum of Ri value of 0.4 was obtained at 7 km height. Although the

computed Ri did not actually go below 0.25, due to the limitation of height resolution of the
radiosonde data, it is quite clear that KHI occurred at about 7 kin.
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A Typhoon Observed with the MU Radar
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1 Introduction

The first observation of a typhoon with the MU radar (136.1°E, 34.9°N) was made on August

13-18, 1983 (Kato et al., 1984). The MU radar was operational at that time with a partial

system of about 1/8 of the current one both for the antenna area and the output power. Also,

the antenna beam was not steerable during obselwations, so that the observation was made

with one beam direction (10 ° to the east) only. Nevertheless_ a clear vertical structure of the

wind field associated with the typhoon was observed up to about 12 km height.

No close encounter of a typhoon to the MU radar had occurred since then until typhoon

8719 passed by at a distance of about 100 km from the radar on October 17, 1987. The MU

radar was fully operational during the passage of the typhoon, and the observation was made

continuously for about 60 hours around the closest encounter. Here we report the results of a

preliminary analysis of this observation, concentrating on the wave activities associated with

the typhoon.

2 Observational Techniques

The MU radar is a 46.5-MHz monostatic Doppler radar with an active-phased-array antenna

of 103 m in diameter and with 1-MW peak output power. Readers are referred to Fukao et

al. (1985a, b) for details of the system. The MU radar operated with two modes during the

observation: the troposphere mode with 1-ps single pulse, which observes a height region of

1.5-10 kin, and the stratosphere mode with 16-element complementary codes with 1-#s sub-

pulse width, which covers 5.4-24 km. These two modes are switched alternately every 75 sec

so that the entire height region of 1.5-24 km can be covered with 2.5-min time resolution. Five

beam directions of the vertical, and the north, east, south and west directions with 10 ° zenith

angle are observed with a height resolution of 150 m. The beam directions are switched every

IPP of 400 ps in a cyclic manner.

The line-of-sight Doppler velocity and the echo power are determined on-line by fitting

a Gaussian curve to the observed echo power spectrum at each range gate. The zonal wind

velocity component is determined from the line-of-sight velocities of a pair of antenna beams

pointing toward the east and west, and the meridional component from the north-south beam

pair. The vertical component is directly determined using the vertically pointing antenna
beam.

*Now at Department of Electrical Engineering II, Kyoto Universir_y, Kyoto 606, Japan
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140

Fig. 1. l_ute of the center of typhoon 8719.

3 Mean Wind Associated with Typhoon 8719

Typhoon 8719 was upgraded from a tropical law on October 11, 1987 at east of Philippine.

It evoh,ed as proceeding toward northwest, reached to its most matured stage with a pressure
of 975mb at the center and packed central winds of 40 ms -1 on October 15 at 80 km east of
MinaJni-Daitojima island. It then steered its direction toward the north, and landed Shikoku-

island at 0 JST, October 17, crossed the island, and landed Honshu-island (mainland Japan)
at 4 JST. The pressure at its center at 3 JST was 975 mb, with central winds of 30 ms -_,

It speeded up and further proceeded toward north-northeast, and blew out into the Sea of

Japan at 7 JST. Figure 1 _hows the route of the typhoon. The typhoon is estimated to have
passed by the northwest of the MU radar at around 5 JST, October 17 with the minimum
distance of about 100 kin. Observation with the MU radar started at 29 JST, October 15

and continued for 60 hours until 8 JST, October 18. Figure 2 shows a time-height variation
of the mean horizontal wind velocity. Each arrow denotes the zonal and the meridional wind

velocity component averaged over 1 hour in time and 600 m in height as a vector with a scale

shown on the right of the figure. The thick arrow on the bottom of the figure indicates the
passage of the center of the typhoon. Rotating wind field associated with the passage of the
typhoon is clearly shown in the figure. Effect of the typhoon on the mean wind is observed up
to about 18 km.
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Fig. 2. Tinle-height variation of the mean horizontal wind.
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4 Long Period Waves

Various wave-like fluctuations superimposed on the mean wind are found during this observa-

tion. One of the most pronounced among these is the fluctuations with fairly short (2-4 km)

vertical wavelengths and with apparent periods of the older of 10 hours. Figure 3 shows the

zonal wind component with vertical wa_,eleugths of 2-4 km versus time and height. Contours

m'e drawn every 2 ms -_, and darker shade denotes ea,stward components. The average zonal

wind profile is drawn ou the right.

While no clear phase progression is observed before the passage of the typhoon, a remark-

able tendency of upward and downward 1)ha,_e progression below and above about 14 kin,

respectively, appears after the passage. A similar result is obtained also for the meridional

wind component. Although this apparent l)ha,se progression suggests the generation of inertia-

gravity waves at that height, it can be affected by the Doppler shifting of the waves.

In order to avoid this problem, _v checked the vertical propagation of these waves by a

hodograph aualysis introduced by Hirota and Niki (1985), which makes use of the rotation of

the wind vector in the horizontal plane versus height to determine the vertical propagation

characteristics of the wave. Considering the relatively short vertical wavelength and the large

variability of the wave characteristics with height, we determined only whether the wave is

propagating upward or downward at each height. It is judged by inspecting the trace of the

horizontal wind velocity vector at three adjacent heights around the height of concern, and

by determining whether the hodogral)h has a right-handed or a left-handed curvature with

height.

Figure 4 indicates the portion of the waves i)ropagating upward and downward by the
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Fig. 3. Zonal wind compoael_t, with vertical wavelengths of 2-4 kin.

shading in the time-height section as Fig. 3. The dark and light shades denote downward and

upward propagation, respectively. The predominance of upward propagation seems to indicate
the general tendency of upward energy transport by gravity waves. An outstanding feature
of this figure is a clear reversal of propagation direction starting from 7 JST on October 17

at about 9 km height. The boundary between downward and upward propagation ascends

linearly with time, and reaches 12 km after about 19 hours. Existence of regions with clear
downward and upward propagation below and above this boundary, respectively, suggests the

generation of these waves there.
Coincidentally, a clear temperature inversion was observed by radiosondes launched from

the MU observatory during this period at similar height, which also shows an ascending feature
with time as the boundary shows. This temperature inversion agrees with the cloud top

height estimated from the humidity profile observed by the radiosondes, and also observed by

the radiosondes launched from neighboring weather stations with distances of a few hundred
kilometers from the MU radar. The MU radar also observed an enhanced scattering layer

at the same height. These observed features suggest that this inversion is caused by some
atmospheric discontinuity such as a front. However, a small spatial gradient of this layer, as

estimated from the radiosonde network data around Japan, indicates that this layer has no

direct connection to a cold front observed on the ground after the typhoon had crossed the
Honshu island. Nevertheless, the layer is most likely to be the source of the wave activity
discussed here.
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Fig. 4. Direction of vertical prop_gat, ion of the waves shown in Fig. 3.

5 Short Period Waves and Oscillations

Besides such long period waves, a sul)stantial amplitude was observed also for much shorter

period components of the wind fluctuations. Figure 5 shows the variance of the vertical

wind fluctuations with periods of less than 20 rain versus height and time. These short

period fluctuations are more directly related to the distu:t'bances associated with the typhoon,

including the convective motions.

Although the temporal growth and decay of the activity is readily explained by the convec-

tion inside the typhoon, it is surprising that the enhanced activity in the fluctuations reaches

to the maximum observed height of 24 kin, which is much higher than the top of the typhoon

as indicated in Fig. 2. A vertical wavelength analysis revealed that most of the fluctuations

which reached such high altitudes have vez T large, if not infinite, vertical wavelengths typical

to the evanescent modes. These fluctuations are likely to be oscillations near the Brunt-V_is_l_

period excited by the convective motion within the typhoon. On the contrary, fluctuations at

lower heights contain shorter vertical-wavelength components as well.

6 Summary

A few interesting examples were presented among various phenomena found while a series

of observation of a typhoon made with the MU radar. Besides the importance of measuring

the full vertical structure of a typhoon with the MST radar technique for the first time, the

observation has shown the existence of various wave activities associated with the typhoon.

Although the analyses are yet rather preliminary, they have shown a clear correspondence of
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Fig. 5. Varimme of the vertical wind fluctuations with periods of less than 20 min.

the waves with their sources, which is one of major advantages of studying isolated disturbances

such as a typhoon.
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1. INTRODUCTION

In recent years, many researches have been devoted to the chaotic features of the
atmosphere. There have been two routes of research in this field. The first route is the numerical
modeling of certain models of the atmospheric dynamic system. The most famous model is the
well-known Lorentz system and its strange attractors. These numerical simulations have made
significant contributions to the understanding of chaotic characteristics of the atmosphere. But
owing to the present limiting computation ability, those models have to be oversimplified which
limits the application of modeling results directly to the real atmosphere. The second route is to
deal with observation data of the real atmospheric motions. The key point of this route is to find a
procedure of quantifying the chaotic features of the real atmospheric motions revealed by
"incomplete" observation data, i.e., the data series of several parameters which are usually not
enough to fully describe the system. In the last several years several techniques have been
suggested for analyzing the real observation data, among them the technique of phase space
reconstruction which plays an important role (NICOLIS and NICOLIS, 1984). All significant
characteristics, for example, fractal dimensionality and Lyapunov exponent can be effectively
estimated from real observation data with this technique. A few results have been published about
the strange attractors in the weather and climate system verifying the existence of chaotic attractors
in the atmosphere and indicating that the atmosphere is a system with low degrees of freedom
(NICOLIS and NICOLIS, 1984; FRAEDRICH, 1986; ZHEN(] and LIU, 1988).

In the present paper we shall apply this technique to the investigation of chaotic features, in
particular, the dimensionality and Lyapunov exponent, of the atmospheric motion near the
tmpopause with the MU radar observation data of the upper troposphere and lower stratosphere.

2. TECHNIQUE AND DATA

The technique of deducing dimensionality and Lyapunov exponent has been discussed by
GRASSBERGER and PROCACCIA (1983) and WOLF et al. (1985), respectively. In the present
paper we principally follow their procedures. First we reconstruct different reconslructed phase
space. We start with a set of real data X(O consisting of a time series of L atmospheric variables
(we call variable vector, such as wind components, temperature, etc.) as follows:

X(t) = {Xl(t ) ..... XL(t)}; t = to + pat, p = 0, 1..... N (1)

then define the reconstructed phase space with time lag _, Y(O, as

Y(t) = {yl(O) (t) ..... yl(k-D (t);...;yL(O) (t),...,yLOt-1) (t)}

t = tO + pat, p = 1,2 ..... (N--(k-1) '¢)

yi0) (t) = xi(t + ix), j = 0 ..... k-l; i=l ..... L

(2)
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Obviously in the present case _ should be some integer multiplying At. Based on Y(t) with
different lag z, we can calculate the dimensionality and Lyapunov exponent. The proeedu_s are
simply described as follows:

(1) Algorithm of estimating correlation dimension (GRASSBERGER and PROCACL-TA, 1983).

A. Utilizing the vector time series (1), reconstruct a dynamic system such as (2).
B. Calculate the correlation function

l N

C(r) = N--'_I'_ 0 (r-I YO_)-YCtj)l ) (3)

where I Y(ti) - Y(tj_ stands for the distance between the phase points Y(ti) and Y(tj). e (x) is the
Heaviside function, which is equal to zero or 1 if x > 0 or < 0, and N is the total number of phase
points. In fact, C(r) is a cumulative distribution function. It describes the probability of the event
that the distance between any two points on the attractor is less than r.

C. The relationship between lnC(r) and lnr should be linear in an adequate range ofr. In
other words, C(r) should be a power function of r, i.e.,

C(r) ~ rd(m) (4)

Then the slope d(m) of inC(r) versus lnr is an estimation of the correlation dimension.

D. Increase embedding dimension m and repeat the above procedure until d(m) reaches a
saturation limit. This saturation value d**will be regarded as the dimensionality of the embedded
attractor.

2. Algorithm of estimating the largest Lyapunov exponent (LLE) (WOLF et al., 1985)

A. Same as above, the first step is to reconstruct an m-dimensional phase portrait such as
(2) using given actual data (1).

B. Setting the initial point Y(t 0) as the fiducial point and its nearest neighbor (in the
Euclidean sense) Y(tl) as the end point, construct an initial vector V 0 and calculate its length L0(t0).

C. As the initial vector travels along the trajectory, trace it until its length reaches a local
maximum. The new vector is referred to as an evolved vector and written as Vl(t Q + TO), where
T Ois the evolving time, then calculate the length of the evolved vector and denote tt with Ll(t 0 +
TO). Then the averaged rate of exponent growth of phase length L in the time period T Omay be
expressed as

1 L
)-I= T0 logz _ (5)

itsunitisbit/second.

D. TreatYOn + Tn)asthenew fiducialpointand lookforanew end pointthatsatisfiesthe
followingtwo conditionsreasonablywell:thelengthofthenew constructedvectorV l(referredto
asthereplacementvector),Ll(tl),issmall,and theangularseparation01betweentheevolvedand
thereplacementvectorissmall,also.

E. Use Vtas thenew initialvectorand repeatstepsB,C, and D. The calculatedgrowth
rateisdenotedas)_-z.The aboveproceduregoes on untilthefiducialpointreachestheend ofthe
pointset{Y(tl)}.We takethcaveragevalueofthegrowthrates;_kastheestimationofthelargest
Lyapunov cxponcnt,i.e.,
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Nk
I

k=l

where N k stands for the total number of replacerncnt steps.

In order to obtain a good estimation of the largest Lyapunov exponent, it is necessary that
the given time series has enough length.

The dam we used in the present case study is the MU radar observation on 18-20 August
1987, three days continuous observation. We selected three altitude ranges around the tropopause,
i.e., 10 kin, 14 kin, and 18 km that represents the upper troposphere and lower stratosphere. We
used wind components of u and v, the time interval of observation was about 2.5 min. The data
consisted of two components and 1555 time points.

3. RESULTS AND DISCUSSIONS

Based on the MU radar observation dam sets and the procedures for estimating correlation
dimensions (D) and the largest Lyapunov exponent (LLE) described in the last section, D and LLE
for three different altitudes (10, 14, and 18 kin) were calculated separately. Table 1 lists the
corresponding largest Lyapunov exponents. From Table 1 the following results can be obtained.

A. The atmospheric system as we studied in this paper is a system of low degrees of
freedom.

B. In the upper troposphere the correlation dimension of the system is about 4 - 5, the
corresponding saturated embedding dimension is about 10. It means that for a full description of
this system, 5 independent parameters is the least and I0 is the most.

C. In the lower stratosphere, the correlation dimension and the saturated embedding
dimension are about 6 - 7 and 14, respectively. That means the lower stratosphere contains more
complicated motion scales than the upper troposphere.

D. The calculated Lyapunov exponents show that the time scale of predictability for the
motion in these three altitude ranges are about 110 - 125, 125 - 150, and 135 - 160 minutes,
respectively.

Table 1.

Altitude Correlation Embedding Lyapunov Predictability
(krn) Dimension Dimension Exponent (min)

10 4.14 10 0.156 110-125

14 4.45 10 0.137 125-150

18 6.84 13 0.124 135-165

4. SUMMARY

From the present case study we see once again that atmospheric motion is chaotic. Also,
MST radar data, such as that from the MU radar, are very useful to research of the chaotic
atmosphere, in particular in the free atmosphere where obtaining quasi-continuous data is very
difficult. Since MST radars have the ability of obtaining more than six independent parameters,
such as three components of wind vector and their gradients, echo power, etc., it will be a
powerful tool to fully describe the performance of the atmospheric system. It is revealed that from



291

present resultsof values of the Lyapunov exponent, the observation with present time interval

(about 3 minutes) willbc usefulfor nowcasting in thecorresponding altituderange,
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I. INTRODUCTION

Much has been learned in recent years concerning the nature of the ob-

served spectrum of mesoscale variability in the free atmosphere. Major

progress has been made, for example, through spectral analysis of time series

of Doppler radar observations of horizontal a_.d vertical velocities. The

frequency spectra determined from radar observations have been compared with

spectral models for internal waves and quasl-two-dimenslonal turbulence

(VANZANDT, 1982, 1985; SCHEFFLER AND LIU, 1985; and GAGE AND NASTROM, 1985a,b),

While there is still considerable debate concerning the nature of the

spectrum of horizontal velocities, there is general agreement that the vertical

velocity spectra in undisturbed conditions are almost entirely due to internal

waves. This view is supported by the climatological study of the frequency

spectra of vertical motions reported by ECKLUND et al (1986) and the detailed

analysis of vertical velocity observations from the Flatland radar (GREEN et

al, 1988; VANZANDT et al, 1989).

Although the vertical velocity spectrum seems to result from internal

waves, the horizontal velocity spectrum may be expected to have contributions

from both internal waves and quasl-two-dimensional turbulence as discussed in

GAGE AND NASTROM (1985a,b; 1986) and GAGE (1989). Recently, this subject has

received increased attention from the oceanographic community in the recent

work of MOLLER et al (1988) who estimate the relative contributions of internal

waves and vortical modes to the ocean current spectra observed during IWEX.

The coexistence of waves and quasi-two-dimensional turbulence is anticipated in

the analysis of stratified turbulence contained in RILEY et al (1981) and LILLY

(1983). The subject of turbulence in stratified fluids has recently been

reviewed by HOPFINGER (1987).

This paper is concerned with the explanation of the enhanced frequency

spectra of vertical motions that are often observed near mountains under strong

wind conditions. We hypothesize that these enhanced spectra of vertical mo-

tions are due to a contamination of the vertical, motions by a component of the

quasi-horlzontal motions that occur on isentropic surfaces. According to this

hypothesis, when isentropic surfaces are tilted as they are by lee waves, the

vertical beam of the Doppler radar observes a component of the quasi-horizontal

motions. This hypothesis is tested by employing a simple model that relates

the observed vertical velocity spectrum to the observed horizontal velocity

spectrum. Observations taken by the Platteville, Colorado radar are used for

this purpose.
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2. THEENHANCED_E_ENCYSPECTRUMOFVERTICALMOTIONS

A clear illustration of the e_ancedfrequencyspectrumof vertical mo-
tions is sho_ in Figurei. Toesespectrawerereportedby ECKLUNDet al
(1985)andweretakenin southernFranceduringbe ALP_experiment.TOe
enhancedspectracontrastdramaticallywith the relatively flat spectraof
vertical velocity obse_edunderquiet conditionssho_ in FiguresI and2.
Furthe_ore,be quiet-timespectraobse_edduringALP_closelyresemble
vertical velocity spectraobse_edelsewhereundersimilar conditions(ECKLUND
et al, 1986). Toeyalso rese_le be Flatlandvertical velocity spectra
reportedby VANZANDTet al (1989)obse_edundermostconditions.

ALPEXVERTICALWIND SPEED POWERSPECTRA
103 I I 1 ] 1 I
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iN
IlO 2 --

10 I
_ _ Quiet Doys __

--_ -_,,"__

LOo

0

i61

1 I I 1 1 I 1
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Period(minutes)
Figure l. The frequency spectrum of vertical velocity

observed in southern France during ALPEX for active and

quiet days. (After ECKLUND et al, 1985).

Toe possibility that the enhanced frequency spectrum of vertical motions

might be due to Doppler shifting of an internal wave spectrum by strong winds

needs to be considered. Both SCHEFFLER AND LIU (1986) and FRITTS AND VANZANDT

(1987) have analyzed the effect of mean winds on a spectrum of internal waves.

Recently, VANZANDT et al (1989) have shown that the relatively small changes of

vertical velocity spectra that are observed at Flatland can be explained by

Doppler shifting.

The fact that enhanced vertical velocity spectra are not observed at

Flatland is a strong argument that the enhanced vertical velocity spectra
observed at other locations is due to the influence of terrain and not to

Doppler shifting. In the remainder of this paper, we examine the enhanced

vertical velocity spectra that are observed at Platteville, Colorado in the lee

of the Rocky Mountains.
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southern France during ALPEX for quiet days.

1985).

Site 1

Heights 59-6.1 km
12, 15, 14 Moy 1982
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17, 18 April 1982
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The frequency spectrum of vertical velocity observed in

(After ECKLUND et al,

3. FREQUENCY SPECTRA OF VERTICAL AND HORIZONTAL MOTIONS OBSERVED AT

PLATTEVILLE , COLORADO

The Platteville radar has been in continuous operation since the early

1980's. It was originally constructed as a prototype for the Poker Flat MST

radar (ECKLUND et al, 1979) and has been operated in recent years by NOAA's

Wave Propagation Lahoratory. The spectra presented in Figure 3 and Figure

are composite spectra averaged by season and stratified by the standard devia-

tion of vertical velocity. At Platteville, there is a close relationship

between the background wind speed and the vertical velocity variance as evident

in Figure 3 and Figure 4.

Composite vertical velocity spectra for the winter season at Platteville,

Colorado are shown in Figure 3. These spectra show clearly the enhancement in

spectral magnitude and systematic variation of spectral slope that accompanies

increasing winds at this location. The dashed curve indicates a spectral slope

of -5/3. With increasing wind speed the observed vertical velocity spectra

approach the -5/3 spectral slope. Only those time periods when both horizontal

and vertical wind components were measured are used here, although the results

are very similar when all available data are used.

Corresponding composite zonal wind spectra at 5.8 km for the winter season

as stratified by vertical velocity variance are shown in Figure 4. These

spectra also show a systematic but less pronounced variation with background

wind speed. Note that the magnitude of the horizontal velocity spectra are in

all cases considerably larger than the magnitude of the corresponding vertical

velocity spectra. Again, the dashed llne shows the -5/3 slope for comparison

with the observed spectra.
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4. A SIMPLE MODEL FOR THE ENHANCED VERTICAL VELOCITY SPECTRUM

The simple model used here to explain the enhanced vertical velocity

spectrum is based on the idea that in stably stratified flows the velocity

field is comprised of both internal waves and potential vorticity modes (RILEY

et al, 1981; LILLY, 1983; MOLLER, 1984, HERRING AND METALS, 1989). The poten-

tial vorticity modes are comprised of quasi-horizontal eddies that follow very

closely isentropic surfaces in the stratified fluid. Accordingly, when the

isentroplc surfaces are horizontal and undisturbed, vertical motion wlll be due

only to internal waves. The horizontal motion field, however, will be com-

prised of both internal waves and vortical modes. When isentropic surfaces are

tilted, the vortical modes will also be tilted to conserve potential vorticity

so that there will now be a vertical component to the vortical motion.

The consequences of the model on observations by a vertically directed

radar are simple and straightforward. When isentropic surfaces are flat, the

radar will observe only the internal gravity wave field and vortical motions

will not be observed. However, when isentropic surfaces are tilted, as they

may be by mountain lee waves, the radar will observe a component of the vorti-

cal motion.
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The process can be quantified as follows. If the effective tilting angle

is 6, the observed vertical velocity spectrum _ww(_) is related to the horizon-

tal velocity spectrum Cuu(_) by

¢ww(_) - sin 2 6 #uu(_) + [_ww(_)] internal waves (I)

Thus if 6 were known it would be possible to estimate the vertical velocity

spectrum from the observed horizontal velocity spectrum since the internal wave

spectrum is fairly well known. From the Platteville observations, we can

deduce the effective tilting angle that satisfies Eq. (i).
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Figure 5. An illustration of the

deduction of the vertical velocity

spectrum from the observed hori-

zontal velocity spectrum using

Eq. i. Also shown is the observed

vertical velocity spectrum for

u - 17 ms-* for comparison.
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Figure 6. Frequency spectra of

vertical velocity derived from

the observed horizontal velocity

according to Eq. i. These

spectra should be compared with

the observed spectra in Fig. 3.

5. VERTICAL VELOCITY SPECTRA DEDUCED FROM THE SIMPLE MODEL

Vertical velocity spectra can be deduced from the observed horizontal

velocity spectrum by first determining the effective tilting angle. The effec-

tive tilting angle is determined by the value of 6 required to reduce the

horizontal velocity spectrum to the observed magnitude of the vertical velocity
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spectrum.Forexample,Figure5 showsthat 6 - I0 ° brings the observed

horizontal velocity spectrum for U - 17 ms -I into near coincidence with the

observed vertical velocity spectrum. Note that only when the effective tilt

angle is less than about 5 ° does the internal wave spectrum become important in

Eq. (I) for these observations.

Model vertical velocity spectra for the various background horizontal

velocities in Figure 4 are shown in Figure 6. Comparison of the two sets of

spectra shows excellent agreement. The effective tilt angles that are consis-

tent with the model fall in the range of 2.5* - I0". This magnitude of tilt is

easily produced by lee waves that possess horizontal wavelengths of order ten

kilometers and vertical displacements ranging from several hundred meters to

greater than one kilometer (GAGE, 1986). Of course, in the absence of mountain

lee waves tilting would not be sufficient to produce the enhanced vertical

velocity spectrum. On the synoptic scale isentropic surfaces are generally

tilted less than a few tenths of a degree. Propagating internal waves can

cause tilting of perhaps a few degrees which could cause a slight enhancement

in the observed magnitude of vertical velocity spectra at very low frequencies

even over flat terrain.

6. CONCLUSIONS

A simple model has been used to simulate the enhanced frequency spectra of

vertical motion observed at Platteville, Colorado under disturbed conditions.

If it is hypothesized that the horizontal velocity spectrum is primarily due to

quasi-horizontal motions associated with potential vorticity modes, the mag-

nitude and shape of the observed vertical velocity spectrum can be explained by

tilting of isentropic surfaces due to lee waves.

While the simple model proposed here is reasonably consistent with obser-

vations at Platteville, more stringent tests are required before too much

confidence can be placed in the result. For example, independent estimates of

the slope of isentropic surfaces associated with lee waves expected under

various background wind conditions would strengthen the analysis.

Alternatively, observations taken simultaneously at more than one oblique

zenith angle would help with the evaluation of how much of the horizontal

velocity spectra is associated with vortical modes and how much is due to

internal waves.
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ON THE ROLE OF PARAMETRIC INSTABILITY IN RADAR

OBSERVATIONS OF MESOSPHERIC GRAVITY WAVES

J. Klostermeyer

Max-Planck-Institut fiir Aeronomie, 3411 Katlenburg-Lindau, FRG

i. INTRODUCTION

Parametric instability of gravity waves has been investigated since many years

both theoretically and in laboratory epxeriments (MCEWAN and ROBINSON, 1975;

MIED, 1976; DRAZIN, 1977; KLOSTERMEYER, 1982, 1983). A monochromatic

finite amplitude internal gravity wave is a simple example of a space a.nd time depen-

dent fluid flow that even at vanishingly small wave amplitude, is inherently unstable

due to resonant wave-wave interaction (MIED, 1976). In the absence of molecular

dissipation, there is no threshold for instability to occur as in the case of horizontally

stratified time independent shear flows for which Ri >_ 1/4 (Ri: Richardson number)

is a sufficient criterion for stability (MILES, 1961).

Only few authors have applied the theories of resonant interaction and parametric

instability to atmospheric gravity waves (YEH and LIU, 1981, 1985; KLOSTER-

MEYER, 1984; DUNKERTON, 1987; INHESTER, 1987; DONG and YEH, 1988).

Whereas the application of weak resonant interaction theory to internal atmospheric

gravity waves can be criticized because these waves axe strong at least at meso-

spheric heights, the theory of parametric instability is not limited to small-amplitude

primary waves and can be applied whenever there is a strongly dominant harmonic

wave within a spectrum of otherwise weak waves. Such events may occasionally occur

at mesospheric heights. Moreover, since the semidiurnal tide usually dominates the

mesospheric wave spectrum (ROSTER, 1984) it appears worth-while to extend the

theory of parametric instability to waves in rotating stratified fluids and compare its

predictions with mesospheric observations.

2. SUMMARY OF THEORY

The following short description of parametric instability theory is restricted to two-

dimensional motions in an unbounded inviscid uniformly stratified Boussinesq fluid

(cf. MIED, 1976; KLOSTERMEYER, 1982). In the atmosphere, the Boussinesq

approximation is valid, if the gravity wave-associated fluid velocity is much smaller

than the speed of sound and the wavenumber k is much larger than the reciprocal

density scale height H : k: >> (2H) -2. This relation is satisfied for wavelengths

smaller than about 10 kin. We introduce a stream function • and buoyancy B by
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u (_ -%), B P- p"= , .... g (1)
P,

with U, p and g denoting, respectively,the fluid velocity,density and gravitational

acceleration, p. is some suitable constant reference density used in the Boussinesq

approximation to replace p in the inertia term. z and z are horizontal and vertical

coordinates, and the subscripts denote the corresponding partial derivatives. Then

the fluid motion is described by the nonlinear vorticity and density equations

(2)

with N the V_s£1_-l_runt frequency.

The finite amplitude plane wave

@=Acos@, B=-N2lw '1cos@

with 4_ = Iz + mz - wt is a solution of (2) if the dispersion relation

(3)

w _ = N 2 cos 2 0 (4)

with 0 = arctan (re�l) is satisfied. To investigate the stability of (3) we put

= A cos _ + ¢, B = -N21w-lA cos ff + b (5)

where _, and b are perturbation quantities. We further define nondimensional vari-

ables by

(_,_)=k(x,z), _=Nt, _2=k2N-_, B=kN-2B, M=k2(2N)-_A (6)

with k = (l 2 + rn2) _/_ a_d introduce a rotated coordinate system (_, 7?) such that the 7/

axis coincides with the wavenumber vector k of the primary wave (3). Substituting (3)

into (2) and neglecting all terms containing product,_ of the perturbation quantities

then yields

V_b, .{- sin0b( + cosgb, = 2MsinO(¢e + _'_¢e)
(7)

bt .- sin 0¢e - cos 0¢, =2MsinO(¢¢+be)

where the tilde of the nondimensional variables has been omitted and _'2 = c02/O( 2 +

O2/br_ 2, @ = _ - cos Or.

Floquet theory requires solutions of the form

3---- -oo

(s)
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where the term with j = 0 is called a Floquet wave that has a wavenumber a

and propagates at an angle _ to the primary wavenumber vector k. The complex

quantities A and (_bj,bj) can be obtained from a linear eigenvMue problem. For

M _ O, the nondimensionai perturbation wavenumbers and frequencies in x - z

coordinates are

k 3

so that for all j

= (a cos(0 + 8) + J cos 0, a sin(0 + _3) + j sin 0)

= j cos0- ImA
(9)

kj+l - k_ = k, wj+l - w i = w. (10)

Since wj = cos 0j where 0j is the angle between k i and the horizontal, parametric

instability reduces to nonlinear resonant interaction for M _ 0.

3. BRAGG SCATTER FROM FAST GROWING INSTABILITIES

The computed results in this and the next section were obtained for a fixed prop-

agation angle O = -72 °, i.e. for a primary wave with a period about three times

larger than 2rr/N while both the primary wave amplitude M and the Floquet vector

have been varied systematically. The fastest growing instability modes for given M

were generally found for Floquet wavenumber vectors pointing to the hatched areas

along branches A and C of the interaction diagram in Figure 1.

O
Figure 1. Resonant interaction diagram

for a primary wave propagating at an an-

gle 0 = -72 ° . Any point on a branch

defines a resonant triad satisfying (10).

Thick (thin) branches indicate unstable

(stable) triads. The hatched parts of
branches A and C are locations at which

triads containing the primary and the Flo-

quet waves give rise to fast growing para-
metric instabilities.

The maximum growth rates max (Re,k) near branches A and C as functions of

a are shown in Figure 2. Note that the corresponding Floquet wavenumber vectors

do not point exactly to the resonant interaction diagram because M > 0. Figure 2

indicates that near branch C, the fastest growing disturbance waves have wavenum-

bars comparable to the primary wavenumber k which is unity in nondimensional

coordinates. These disturbances lead to a broadening of the wavenumber spectrum

and dominate the small-scale disturbances along branch A at small primary wave
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amplitudes (M = C.1, M = 0.2). At larger M values (0.4 and 0.6), the small-

scale disturbances along branch A grow faster thigh the disturbances along branch

C. In the absence of molecular dissipation, the A curves extend to infinitely large a

values whereas in the presence of dissipation there is a viscous cut-off (KLOSTER-

MEYER, 1983). The relevance of parametric instability to atmospheric radar mea-

surements is evident: At suj_ciently low molecular dissipation, a gravity wave of

arbitrary amplitude gives rise to small-scale disturbances producing Bragg scatter,

i.e. it makes its own _ppearance without needing aaly external turbulence source like

Kelvin-Helmholtz or :_tatic instability.
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Figure 2. Nondimensional maximum growth rates max (Rek) vs.
Z

Floquet wavenumber c_ near branches A and C of the resonant

interaction diagram for several values of the primary wave am-

plitude M. Note the different scales for a along branches A and

C.

4. LAYERED STRUCTURES AND TAYLOR'S HYPOTHESIS

Figure 3 shows the vertical structure of the Floquet solution (8) for z and t con-

stant. The primary wave propagates at an angle 8 = -72 ° and has an amplitude of

M = 0.1, the Floquet wa_enumber vector is given by a = I0 and _ = -9.if'. The so-

lution is a high wavenum_er oscillation due to the first :_aetor on the right of (8) that

is modulated by a Fourier series with a spatial periodicity determined by the vertical

wavenumber rn of the primary wave. The wave groups in Figure 3 thus move with a

group velocity equal to the phase velocity of the primary wave. Closer examination

further reveals that the w_venumber of the fast oscillations depends slightly on z. In

general it turns out that at _ >> 1, the Floquet solutions for ¢ and b or any linear
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combination of both quantities and their derivatives can be described by the WKB

approximation

a(x, z, t)e i_(_'''') (11)

where _ is a rapidly varying phase angle and a a slowly varying amplitude so that

we can define a local wavenumber vector and a local angular frequency by

k' = (_,_), a/= -_t. (12)

All instabilities arising from Floquet wavenumber vectors pointing to branch A of

the interaction diagram thus form a continuous wavenumber spectrum.

°i

0 _ 2 3 _ S 6

Z

Figure 3. Stream function and buoyancy perturbations vs. height

for constant z and t, produced by a primary gravity wave with 0 =

-72 ° and M = 0.1, and a Floquet wavenumber vector with or = 10

pointing to branch A. All quantities are normalized according to

(6),

Are the high-wavenumber disturbances frozen in the flow of the primary wave

(Taylor's hypothesis)? We have to compare the time derivative _t and the advective

term (U . V)_b calculated from (8) where the stream function perturbation _ could

also be replaced by the buoyancy perturbation b or some other perturbation quantity

obtained from tO and b. U is the space and time dependent fluid velocity of the

primary wave (cf. (1)):

U : Asin_(-rn,1). (13)

Since at a >> 1, all perturbation variables can be expressed by the WKB-ansatz

(11) we have approximately

0
-uo, U • V = ik'. U. (14)

Both _' and k'. U have been computed at equidistant values of q_ in the inter-

val [0,27r]. Tile correlogram in Figure 4 shows that the majority of all values is in
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fact strongly correlated. Only those values computed at small amplitudes a of the

WKB-ansatz (11) shoT¢ no or weak correlation. This does not necessarily mean that

O/Ot - U. V # 0 because the relations (14) may be invalid at small a. Preliminary

studies indicate that tile range of _5 within [0, 27r] yielding strong correlation between

J and k'-U increases with increasing c_. For a given Floquet wavenumber a, Taylor's

hypc_thesis thus is valid at sufficiently large amplitudes a.

02

5_, O0

-01

-02

-03

Figure 4. Correlogram: Disturbance wave frequency, w', vs.

advection by primary wave fluid velocity, k _ • U, for a pri-

mary wa_e with 0 = -72 ° and M = 0.1 and a Floquet

wavenumber c_ = 10. The continuous line represents perfect

correlation. The circles are obtained from pa/rs of values

taken over one cycle of the primary wave. Deviations from

strong correlation occur only at small disturbance wave am-

plitudes (of. (It)).

If we asume for simplicity that the radar refractive index varies as the air density

or, equivalently, as the buoyancy, the scattered radar signal power would show the

same height dependence as the amplitude of b. The radar signal power then has a

layered structure movinf at the phase velocity of the primary wave, and the signal

Doppler ,at_ift yields the fluid velocity o/the priraary wave e_cept perhaps at vanish-

inyly small signal power.

5. A CASE STUDY

In laboratory experiments, DAVIS and ACRIVOS _1967) demonstrated that an

internal gravity wave propagating along the interface between fluids of different den-

sities can be distorted by energy exchange within resonantly interacting triads. The

power spectrum of a strcng internal gravity wave in the lower thermosphere gener-

ated by the eruption of Mount St. Helens on t8 May 1980 was explained in terms of

parametric instability by KLOSTERMEYER (1984). R()TTGER (1987) has noted
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that time series of mesospheric spectra intensity plots obtained from measurements

with the mobile SOUSY VHF Radar at the Arecibo Observatory show high-frequency

oscillations superposed on low-frequency gravity waves. He points out that the am-

plitude of the dominating low-frequency waves does not grow with increasing height

even though wave breaking discernible from strong echo intensity bursts is absent.

Therefore some other saturation process such as parametric instability must be con-

sidered.

Short-period gravity waves with frequencies close to the local V£is£1£-Brunt fre-

quency occur frequently in mesospheric MST radar observations of vertical or near

vertical radial velocities [HARPER and WOODMAN, 1976; MILLER et el., 1978].

These waves do not show any vertical phase variation over height intervals of sev-

eral kilometers indicating that they propagate horizontally and are generated in situ

rather than in lower or higher atmospheric regions. Occasionally the local source

mechanism is Kelvin-Helmholtz instability of a wind shear due to long-period iner-

tial or tidal waves [KLOSTERMEYER and RrJSTER, 1984; YAMAMOTO et al.,

1988]. But in general the simultaneously observed wind shear is too weak for Kelvin-

Helmholtz instability to set in. An example of a measured high-frequency wave with

a period near 10 rain superposed on a low-frequency internal gravity wave with a

period of 30 min and a downward propagating phase is shown in Figure 5.

SOUS¥ VMF _ADAR

2q JAN _984

Z :70,6km

" ...... ,_/' s; _" _k. ?0.3 _m

• . 69.7km

1_30 7200 1230 1300

Loc@ Time

Figure 5. Vertical velocity component vs. time at four

heights measured by the mobile SOUSY VHF Radar

at Andenes (Norway) on 21 January 1984. Continous

curves: time series after noise removal; dashed curves:

time series after high-frequency wave removal. (The

original time series without noise removal were pub-

lished by ROSTER (1984).)

To explain the measured results in Figure 5 in terms of parametric instability, we

consider again the maximum growth rate along branch A in Figure 2. At M _> 0.4,
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the curves show one or two local maxima near a = 1 and c_ = 2. We will call the

corresponding instabilities isolated because their Floquet wavenumber a is clearly

separated from the continuous _ range of the fast growing high-wavenumber insta-

bilities. The exact nature of the isolated instabilities is still unknown but they might

be due to resonant interactions of third or higher order because they occur only at

the larger M values. Figure 6 shows a numerical simulation where the dashed curves

represent the verticeJ velocity component of a primary wave with 0 = -80 ° and

M = 0.5, and the corttinuous curves the fastest growing isolated parametric instabil_

ity. At finite amplitude, the growth of the instability is probably limited by nonlinear

interaction with other waves including the primary wave. These effects have been

parameterized in the computations by eddy viscosity and thermometric conductivity

coefficients. Note that the height interval in Figure 6 is 75% of the basic vertical

wavelength whereas in Figure 5, it is only about 10%. The observed and computed

short-period oscillations show good qualitative agreement. Both reveal in particu[ar

considerable tempora:, amplitude modulation, and the dominating period is not an

integer multiple of the basic period. There is in general also no vertical phase vari-

ation. But the computed short-period oscillations show sudden phase reversals, e.g.

at Nt = 20 and kz = 4.8. The loci of sudden phase reversals lie on basic wave fronts.

Whereas there is no clear evidence for phase reversals in Figure 5 (perhaps due to the

small height interval) they become visible if velocity measurements can be obtained

over larger height intervals (e.g. Figure 1 of MILLEP_ et al. [1978]).

i_ _°I
=" -0.3 _

"' kz = 6._-

\ •
.... / i ¸

¢. i; ¸¸ %.

"_-:<7_. • ' g,B_" " .....

1,6

Nt

Figure 6. Numerical simulation of parametric insta-

bility. The dashed and continuous curves represent

the primary wave and the sum of primary wave and

fastest growing isolated parametric instability, respec-

tively. 'rime, height and vertica/velocity component

are normalized according to (6).
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SEASONAL VARIATION OF TURBULENCE INTENSITIES IN THE UPPER

MESOSPHERE AND LOWER THERMOSPHERE MEASURED BY RADAR TECHNIQUES

DURING THE 3-YEAR PERIOD 1985 - 1987.

W.K. Hocking,

University of Adelaide, Australia.

Since February 1985, the 2-MHz narrow beam radar operated by the University

of Adelaide in Australia has been used to measure the short-term root-mean-

square fluctuating velocities of radlo-wave scatterers in the upper middle

atmosphere (80-100km). To do this, the widths of the spectra of the signals

recorded by the radar are utilized, as described for example by HOCKING,

(1988). Briefly, the measured spectral widths of the received signal are due to

a combination of beam broadening, wlnd-shear broadening ("instrumental

effects") and natural fluctuation. The method involves determining the

"instrumental contribution" and then removing its effect to leave the

contribution due to natural effects. For the Adelaide radar the experimental

spectral widths almost always exceed the widths expected due to "instrumental"

effects by a small but significant amount (HOCKING 1988), and so it is possible

to measure these fluctuating velocities.

The measured fluctuations are caused by a mixture of turbulence and gravity

waves, and under certain reasonable assumptions the contribution due to

turbulent fluctuations can be extracted. The results of the measurements made

during 1985 and 1986 have been discussed in detail by HOCKING (1988), and this

short article extends the data set to include 1987.

The results for 1985 and 1986 showed that the smallest values occur in the

equinoxes (HOCKING, 1988). In 1986 there was some hint of a semi-annual

oscillation in the median values, but it was not very strong. The extension of

the data to include 1987 shows a seml-annual oscillation much more clearly.

Fig. 1 shows the weekly means for 1987, with the 1986 variation super-imposed.

It is interesting to reflect on the reasons for this significant inter-annual

variability which clearly exists.

Of the three years during which measurements have taken place, the year 1985

stands out as being distinctly different to 1986 and 1987, chiefly because very

large values of energy dissipation rate occurred at the equinoxes, in addition

to very small values. These very large values may be related to the diurnal

tide, which was extraordinarily large in 1985. It appears that the semiannual

oscillation reflects a similar oscillation in gravity wave activity, and that

it is energy deposition by such waves which is the primary source of turbulence

in the middle atmosphere. However, other sources exist and can alter the normal

semi-annual character; 1985 is an example, where the presence of the tides

causes a significant departure from the normal trend. The tides may not

thermselves cause the extra turbulence, but may act as a trigger for enhanced

gravity wave breaking by wave-tlde interactions for example. The experiment is

continuing in order to examine the interannual variability in more detail.

References HOCKING, W.K. "Two years of continuous measurements

of turbulence parameters in the upper mesosphere and

lower thermosphere made with a 2-MHz radar". J.

Geophys. Res., 93, 2475, 1988.



310

86 KM 1987

ADELAIDE. AUSTRALIA (35°S)

0.20-

0.16-
E

w kg-' o.12-

0.08-

0.0_

0.00

.... 5point mean 1986

5point mean 1987

"l-'----I u 1 I i
J F M A M J

I I I ! i I

J A S 0 N D

Time

-4.0

-35
-3.0
-25
-212

-1.0

ms -'o

Flg. 1. Weekly means of the turbulent energy dissipation rates
in the mesosphere at 86 ks altitude, The data for
both 1986 and 1987 are shown. The broken and

continuous lines show five-point running means of
the weekly means for 1986 and 1987.
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OBSERVATIONS OF QUASI-INERTIAL PERIOD WAVES

IN THE LOWER STRATOSPHERE OVER ARECIBO

M. F. LARSEN 1 and C. R. CORNISH 2

tDepartment of Physics and Astronomy

Clemson University

Clemson, SC 29631

2School of Electrical Engineering

Corne[l University

Ithaca, NY 14853

INTRODUCTION

A common feature of the wind profileobservations carriedout with the Arecibo Observatory 430-MHz

radar has been the presence of a wavelike structure near the tropopause and in the lower stratosphere.

Typical characteristicsinclude a verticalwavelength of 1.5-3.0km and a horizontal wind perturbation

amplitude of 3-5 ms -I. Obtaining observations over extended periods has been difficultat Arecibo due

to the competition for time between astronomers, ionospheric physicists, and, to a lesser extent,

meteorologists. However, the persistenceof the structure,as well as the experiments carried out over

periods of a day or two, indicate that the wave periods are of the order of a day or more.

The common interpretation of the observed wave structure has been that they are due to low-frequency

quasi-inertial period waves, although the source of such waves has not been clear. Interpretations along

these lines have been given by SATO AND WOODMAN (1982a), who first discovered the waves at

Arecibo, by MAEKAWA et al. (1984), who reanalyzed the two-day data set first presented by SATO

AND WOODMAN (1982a), and by CORNISH AND LARSEN (1984) and CORNISH (1987) based on

a preliminary analysis of the more extended data set that we present in this article.

The presence of the wave structure at Arecibo and the associated dynamics are of interest in and of

themselves, but there may be more universal interest in the phenomenon since observations of similar

structure have been made at a variety of locations by a number of investigators over the past three

decades. Common features of the observations have been the presence of low-frequency, large-

amplitude oscillations in the lower stratosphere with periods in the earth-fixed reference frame of the

same order as the inertial period, given by 12 hr/sin 8 where _ is the latitude. The structures are

characterized by horizontal perturbation velocity amplitudes of a few ms "1 up to 10 ms "l and small
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vertical wavelengths of 1-5 km. The waves may be present in the troposphere but are primarily

observed near the trop<,pause and in the lower stratosphere. Some of the relevant studies that have

shown the presence of t_le tropopausal and lower stratospheric waves include those by WEINSTEIN et

al. (1966), MADDEN AND ZIPSER (1970), THOMPSON (1978), CADET AND TEITELBAUM

(1979), BARAT (1983), PFISTER (1985), and SIDI AND BARAT (1986), as well a_ the radar studies

mentioned above. The cited references have focused primarily on the wave structures.

Recently, HINES (1988) has proposed an alternative explanation for the wave structure observed at

Arecibo, namely that the oscillations are essentially orographic waves produced by the flow over the

Puerto Rican terrain. The fundamental difference between his interpretation and the previous ones is

that the intrinsic period, i. e., the period in the frame moving with the mean wind, can be quite short,

whereas the low-frequency gravity wave interpretation requires periods comparable to the inertial

period. HINES' (1988) proposal is appealing in that it would explain the consistent presence of the

waves in spite of changing meteorological conditions associated with changes in season and the passage

of local disturbances. Also, the strong coherence of the vertical wavelength structure would be

explained by the fact theft the vertical wavelength for all orographic waves is the same, regardless of

the intrinsic frequency, _ that even a spectrum of waves will tend to add coherently and produce a

structure similar to what we observe. While the interpretation appears to have considerable merit, the

analysis carried out by HlNES (1988) was based in large part on rough fits-by-eye to the characteristics

of a single wind profile. Other parameters were also estimated coarsely from radiosonde profiles.

In this paper, we will pr_ent a more detailed analysis of a five-day data set obtained with the Arecibo

Observatory 430-MHz radar in May of 1982. We will show that, although HINES' (1988) explanation

of an orographic source ['or the waves appears to have merit, the waves also have low-frequency

gravity-inertia wave char_:teristics.

EXPERIMENTAL SET-UP

In this paper we present data from two sets of wind measurements made in the subtropical upper

troposphere and lower stra;osphere with the Arecibo 430-MHz radar wind profiler.

The Arecibo Observatory is located at 18.3"N latitude, 66.7"W longitude, and the corresponding local

inertial period is 38.1 hours. The observatory is situated in the subtropical zone characterized in the

lower troposphere by the e_sterly flow of the trade winds, while the flow in the upper troposphere and

the lower troposphere is aesterly. The tropopause height is typically in the range from 14-16 km.
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During April and May, the months when both data sets were taken one year apart, the prominent

feature of the mean flow is a westerly subtropical jet maximizing near the tropopause. The general

meterological conditions were mostly fair weather skies with some convective activity just before the

onset of the summer rainy season. Intense convective activity typically begins late in May.

In the May 1982 experiment, the radar was operated in a variable azimuth display (VAD) mode by

pointing the radar beam at a fgxed zenith angle of 15" and rotating it sequentially to 16 different

azimuths. The VAD technique can provide much information about the total wind field (WILSON

AND MILLER, 1972), but our presentation here is limited to measurements of the vertical profiles of

the horizontal winds derived from the line-of-sight velocities taken from the principal directions (north,

east, south, west). Each VAD scan took 35 minutes to complete. At each compass point, the antenna-

pointing system fixed the radar beam, and a profile of radial Doppler spectra was taken during an

integration period of about 1 rain. The transmitted signal was coded with a 32-baud quasi-

complementary (QC) code with a baud length of 1 ms, which yielded a height resolution of 150 m, and

was repeated at an interpule period (IPP) of 730 ms. Quasi-complementary codes have the advantage

over complementary codes in that they reduce interference from fading clutter and transmitter ringing

(SULZER AND WOODMAN, 1984). The number of coherent integrations was 48, which is equal to

the length of the quasi-complementary code sequence. Subsequently, 32-point power spectra were

computed on-line from a set of samples, and fifty spectra were averaged incoherently. The combined

sampling and integration period was 56 s for each radial Doppler spectrum. The velocity, signal power,

and spectral width were derived from the spectra off line with the nonlinear least-squares fitting

procedure developed by SATO AND WOODMAN (1982b).

For the April 1983 experiment, the data-taking programs and experiment parameters were identical to

the previous experiment. The primary difference was that the beam was pointed only in the vertical

direction and toward north and east in the off-vertical direction. The zenith angle for the off-vertical

positions was either 10" or 15". The dwell time in each off-vertical position was 20 rain and the time

spent looking vertically was 90 rain for each sequence. The analysis procedure used to derive the

velocity and signal power parameters for the April 1983 data has been described in detail by CORNISH

(1988).

For both data sets, horizontal wind velocities were calculated assuming that the contribution of the

vertical velocity along the line-of-sight was negligible. The assumption will no doubt lead to errors,

but LARSEN et al. (1986) have shown that the largest contribution of the vertical velocity component
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at zenith angles of 15" is for periods less than $0 rain to 1 hr. Therefore the errors will tend to average

out when periods much lon_ger than 1 hr are being considered.

WIND PROFILE MEASUREMENTS

May 1982 data

In May 1982, wind profile measurements were made on a nearly continuous basis over a seven-day

period. Measurements commenced at 1449 AST (Atlantic Standard Time) on May 5 and the last

profile was taken at 0715 AST on May 12. Due to intense competition for telescope time at Arecibo,

continuous sampling over many days was not feasible. Our goal of sampling with gaps of 4 hr

ma_ximum duration was m_t 80% of the time; longer gaps occurred due to hardware breakdown and

scheduling conflicts. In all, 2153 profiles were measured, though only 380 and 249 profiles from the

meridional and zonal directions, respectively, are presented and analyzed here.

Profiles of the observed horigontal wind in the 6-24 km altitude range during the seven-day observation

period in May 1982 are shown in Figures la and lb for the meridional and zonal components,

respectively. The profile of the mean wind during the entire observation period is plotted to the left of

each figure. On the right, side-by-side profiles of the fluctuating wind component, i.e., the residuals

after subtraction of the mean wind, are plotted sequentially with the same velocity scale as the mean

profile. Linear interpolation was applied to the original time series of velocity profiles to produce

hourly profiles for the entin_ period so that standard spectral analysis techniques could be applied to

the data. Gaps of less than 10 hours duration have been interpolated; longer gaps remain blank. Since

the periods of interest (20-54 hours) are much longer than the gaps ranging from 4 to 12 hours and the

original sampling period of 35 minutes to 1 hour, the effects of smoothing and errors introduced by the

resampling procedure should be minimal.

The profile of the mean wind is characterized by the strong westerly flow of the subtropical jet in the

upper troposphere and lower stratosphere. The zonal component peaks at ~20 m/s near 15 km and

then reverses to easterly flow above 20 km altitude. The me._a meridional component is relatively

weak at all heights.

The most noticeable feature of the profiles is a wavelike structure between 14 km and 20 kin. The

structure oscillates in the ve,'tical with a scale of 1-2 km and persists over most of the observation

period. Below 14 km the flactuating wind is more random and does not display coherent wavelike

structure. Above 18-20 km the wave structure is not discernable. The wavelike structure generally
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Figure la. Time versus height profile of the mean (left) fluctuating (right) components of meridional

wind for a seven-day period May 1982. The velocity scale is shown on the horizontal axis of the mean

component. Note the structure between 14 and 20 km that oscillates in height with a vertical

wavelength of 1-2 kin.
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Figure lb. Time versus height profile of the mean (left) and fluctuating (right) components of zonal

wind for a seven-day period in May 1982. Like the meridional component, a wavelike structure is

observed in the lower stratosphere at and above the tropopause.
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descends slowly in altitude', with time with estimated vertical phase velocities of a few cm s -t.

The tropopause height w._s measured by the twice-daily ra_iiosonde ascents at 0000 and 1200 GMT

(700 and 1500 AST) from soundings taken at the San Juan airport, located 90 km east-northeast of the

Arecibo Observatory. F)r the 15 soundings between 5 May 1982 and 13 May 1982 the mean

tropopause height was 15._1 km and ranged from 14.1 to 17.7 kin. The tropopause height was generally

within 1 km of the lowest height where the wave structure could be discerned. Also the mean wind

profile from the balloon measurements was in excellent agreement with the mean wind profile from the

radar measurements. The two curves are not shown here beca_se they are effectively indistinguishable.

April 1983 data

In April 1983, horizontal wind measurements were made over a 12-hr period beginning at 1019 AST

and ending at 2149 AST on 23 April 1983. In all, 5 sets of 20 one-minute wind profiles were taken for

both the meridional and the zonal directions during the 12-hour period. The antenna was pointed

vertically during the gaps for observations of vertical velocities. The data set is too short for adequate

time series analysis of the mind velocities, but it does provide additional information about the wave

structure in the lower stratosphere.

Wind profiles for the meridional and zonal components are shown in Figures 2a and 2b, respectively,

for the observations on 23 April 1983. The gaps between adjacent sets of profiles is 150 min. The first

profile of each of the last t:_ree observation sets for the zonal component (Figure 2b) is of the wrong

sign due to allasing of the Doppler frequency. A short vertical wavelength (_1.5 kin) structure,

similar to that observed in the May 1982 data set, persists during the entire observation period of

about 12 hours. The stru=ture is first evident at 16 km altitude and continues up through the

maximum plotted height (22 kin).

The mean wind during the i2 hour observation period was westerly at 10-15 ms -_ and, below 16 km,

had a northerly component ,)f _10 ms -1. The subtropical jet was considerably weaker in April 1983

than in May 1982. The zon_.l flow was fairly uniform between 6 and 20-km altitude and did not peak

near the tropopause. The tropopause level, as determined I)y San Juan radiosonde temperature

measurements, was between 16 and 17 km, close to the lower level of the fluctuating wind structure.

A comparison between the fir:_t and last set of profiles for each cx)mponent in Figures 2a and 2b reveals

a slow variation in time and gradual downward phase progression of the wind structure.
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Figure 2a. Profiles of meridional wind for five observation intervals during a 12-hour period on 23

April 1983. Each interval consists of 20 one-minute profiles, and time of observation for each interval

is indicated. Gaps of approximately 2-1/2 hour duration occur between intervals when the antenna

beam was swung at other azimuth and zenith positions. Spacings between intervals are not

proportional at the time periods of gaps. The velocity scale is indicated at the left on the mean wind

profile of the first observation period.
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Figure 2b. Profile_ of zonal wind for five observation intervals during a 12-hour period on 2:_ April

1983. The plot is in a format similar to that of Figure 2a. The first profile of the last three

observation sets is of the wrong sign due to allasing and wrapping of the Doppler spectra.
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Unfortunately, the observation period of 12 hours is too short for meaningful time series analysis, but

the period is clearly longer than the observation interval.

ROTATION OF THE WIND FIELD

A common characteristic of the oscillations near the tropopause and in the lower stratosphere is the

rotation of the perturbation horizontal wind vector with both time and height, such that the tip of the

wind vector traces out ar ellipse. Time hodographs for the May 1982 data are shown in Figure 3 for

heights between 14.78 and 19.13 kin. The resampled time series has been used, which results in a

spacing of 1 hour between points. The first two heights at 14.78 and 15.65 km do not display any

particular pattern. The hodographs for heights between 16.52 and 18.26 trace an approximately

circular arc with the sense of rotation in the clockwise direction marked by the arrow. At 19.13 km,

the polarization appears _o be nearly linear. Height hodographs in a similar format are shown in

Figure 4 for two of the hcurly profiles obtained in May 1982. The spacing between consecutive points

is 150 m. Both hodographs trace out an elliptical pattern with a clockwise sense of rotation with

increasing height, as indk:ated by the arrows. Height hodographs for the April 1983 data are not

presented but show a similar pattern. The rotation of the wind vector with height and time evident in

the Arecibo data shown here and in the earlier study by MAEKAWA et al. (1984) was also a common

characteristic of the wine data obtained by THOMPSON (1978), CADET AND TEITELBAUM

(1979), and SIDI AND BARAT (1986), although THOMPSON's (1978) data which was obtained in

the southern hemisphere s_owed a predominantly counterclockwise rotation while the sense of rotation

was reversed in the norther_i hemisphere observations.

The dispersion and polarization relations derived from the linearized equations describing low-frequency

inertio-gravity waves (see, e.g., THOMPSON, 1978) show that the perturbed wind field becomes more

horizontal as the time scale of the perturbation approaches the inertial period. Furthermore, the wave

polarization changes from linear polarization when the intrinsic period is close to the Brunt-Vaisala

period to circular polarization when the intrinsic wave period approaches the inertial period. The

horizontal wind vector is ellipticaUy polarized for intermediate intrinsic periods. A consequence of

these relationships is that the direction of rotation of the wind vectors will be anticyclonic when the

waves are upward propagating, i. e., clockwise in the northern hemisphere and counterclockwise in the

southern hemisphere. The opposite sense of rotation is expected if the waves are downward

propagating. The wind field rotation in the studies by THOMPSON (1978), CADET AND

TEITELBAUM (1979), SA'FO AND WOODMAN (1982a), IvIAEKAWA et al. (1984), COT AND

BARAT (1986), and ours have revealed an anticyclonic rotation of the horizontal wind vector which
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Figure 3. Time hodographs of horizontal wind vector at selected heights between 15 and 19 km for 38

consecutive hourly samples between 1200 on 6 May 1982 and 0300 on 8 May 1982. A clockwise

rotation pattern of the horizontal wind vector is observed at 16.52, 17.39, and 18.26 km.
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Figure 4. Height hodograpbs of horizontal wind between 15.9 and 18.9 and 18.9 km at 1800 on 6 May

1982 (left) and 0800 on ? May 1982 (right). The height resolution was 150 meters. The horizontal

wind vector shows clockwise rotation with increasing height.
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has been interpreted to be consistent with the expectations for tow-frequency, upward-propagating

inertio-gravity waves.

Although the rotation of the wind vector is a characteristic generally attributed only to waves with low

intrinsic frequencies, HINES (1988) has suggested that waves with high intrinsic frequencies can

produce a rotation of the horizontal perturbation winds if there is a vertical shear in the mean wind

component perpendicular to the direction of propagation of the wave. For higher frequencies, the

velocity components parallel to the propagation direction and in the vertical are essentially in phase,

but the vertical displacement is 90" out of phase with the horizontal winds. Therefore, the maximum

pertubation in the wind component perpendicular to the propagation direction will be 90" out of phase

with the perturbation wind component parallel to the propagation direction, giving an effect that is

similar to the rotation in the wind component produced by the Coriolis force for waves with low

intrinsic periods. We will analyze the relevance of such an effect to the May 1982 data set in more

detail in a later section.

WAVE CHARACTERISTICS

Observed Wave Period

One advantage of the May 1982 data set is that the time series of velocities is long enough so that time

series analysis can reasonably be applied to determine the period in the earth-fixed reference frame.

The data set analyzed by lV[AEKAWA et al. (1984) only covered a two-day period and was marginally

short for a study of waves with periods close to the inertial period. The May 1982 data set was used as

input for a power spectrum calculation using standard FFT routines. An example of the results is

shown in Figure 5 for the zonal wind component at 16.95 kin.

We can estimate the errors in the amplitude determination for _he frequency spectrum by the following

arguments. The variance 0 2 of a real time series v(t) with mean subtracted is related to its power

spectral density, P(f), by

OO

0 .2 = / P(f) df (1)

-OO

(BLACKMAN AND TUKEY, 1958, p. 9). For the velocity time series under consideration,

contributions to the variance include: (I) instrumental noise due to measurement and processing

errors; and (2) meteorologicM noise. If we assume a white noise spectrum for both, the power spectral

density P(f) has a constant ealue P1 at all frequencies across the width of the spectrum. A real time
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series of N points has a power spectral density of N/2 positive frequencies. For a discrete Fourier

transform, i.e., FFT, with equally spaced frequency bins each of width Af, Equation 1 becomes

#2=2_p, Af (2)

The product Pl'Af = So is the spectra/ power at each frequency and is constant for a white noise

spectrum. Since ¢2 = <v2>_<v>2 which can be computed directly from the velocity time series,

we can estimate So = _r_/N, and the spectral variance at each frequency bin can be estimated. _0 is

an upper bound estimate of the error in the Fourier amplitudes due to noise from meteorological and

instrumental sources; spectral amplitudes above the threshold are significant. The average values of

_0 calculated from the velocity time series for heights between 15.0 and 17.0 km are 0.4 and 0.7 m/s

for the zonal and meridional components, respectively. The noise ]evel is indicated by the horizontal

dashed llne in the plot of spectral amplitudes in Figure 5. The spectrum displays two prominent peaks

at 26 hr and 53 hr with amplitudes of 3.75 m/s and 6.0 m/s, respectively, which are both several

standard deviations above the noise level Another factor that has to be considered in evaluating the

significance of the peaks is the background spectrum of the velocity fluctuations. LARSEN et al.

(1986) have analyzed the frequency spectrum of horizontal velocities at Arecibo for an extensive data

set and have shown that the spectra follow power laws with exponents between -5/3 and -2. The

amplitudes corresponding to the two power laws are shown by the thin solid and dashed curves

superimposed on the spectral amplitudes. While the peak near the 2_hr period appears to be

significant, even in comparison to the background spectrum, the significance of the the 53-hr wave is

less clear. Therefore we will focus our attention on the shorter period wave in the remainder of the

article.

Spectral amplitudes of velocities for periods between 14 and 53 hours are plotted versus height in a

three-dimensional format in Figures 6a and 6b for the zonal and meridional winds, respectively. The

zonal component shows a prominent ridge centered at the 26-hr frequency bin that rises out of

background levels at about 14 km, peaks at 17 km with an amplitude of 4-5 m/s, and disappears above

18 or 19 kin. The fact that the spectral peak occurs at approximately the same period over a range of

heights lends credence to the idea that the observed wave structures are part of a coherent oscillation

since theory dictates that the frequency in the earth-fixed reference frame should be constant with

height despite shears in the background winds or variations in the background mean temperatures.

There is only a hint of a similar ridge in the spectra for the meridional winds.
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Figure 5, Computed spect:al amplitudes for the zonal wind component at 16.95 km for the May 1982

data. Spectral peaks are prominent at 26 and 53 hours. The horizontal dashed line on the spectral

plot indicates the estimated noise level. The thin solid line and dashed line superimposed on the

spectral curve show the background values expected for spectral power laws with exponents of -5/3

and -2, respectively. The mean zonal wind during the observation period was 17.4 m/s.
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Figure 6a. Pseudo-3D plot of spectral amplitudes of the zonal wind component for May 1982 data.

The wave period is displayed on x-axis, and the velocity amplitude is displayed on the y-axis.

Successive spectra are plotted for heights between 8 and 24 km along the z-axis.
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Figure fib. Pseudo-3D plot of spectral amplitudes for the meridional wind component of May 1982

data in a format similar to Figure 7a.
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The frequency resolution of the spectral analysis is determined by the length of the sampling period of

160 hr and yields an un,:ertainty of +.00312 hr -1 in the del_ermination of wave frequencies. Therefore,

the 26-hr bin includes contributions from oscillations between ~24 and 29 hr.

Velocity Amplitudes and Phases

We have isolated the p.rJase and amplitude information for the 26-hr components in the zonal and

meridional spectra. The amplitudes of the zonal (dashed line) and meridional (solid line) perturbation

wind components of the 26-hr wave are show in Figure 7. Just above the mean tropopause height of

15.8 kin, the velocity amplitude of the 26-hr component is 3.5-5.0 m/s for the zonal component and 2-3

m/s for the meridional component. For both components, the velocity amplitudes drop off to _ 1 ms "l

above 18 km, close to the estimated uncertainty level of 0.4-0.7 ms -1 for the spectral analysis.

The values plotted in Figure 8 show the ratio of the zonal and meridional perturbation wind

amplitudes on the left and the phase difference between the two velocity components on the right.

Circular polarization, as an example, would require a u/v amplitude ratio of one and a phase difference

of 90". The criteria are satisfied approximately just below 19 kin, but the polarization will generally be

elliptical at other heights. Also, the combination of amplitude ratio and phase difference parameters

will determine the orientation of the ellipses which are not necessarily aligned in the zonal direction.

Intrinsic Wave Periods

The degree of ellipticity of the hodograph of the horizontal wind vector is indicative of the intrinsic

wave period and horizonta_ propagation direction if the oscillations have low intrinsic frequencies, as is

usually assumed. The hodograph is circularly polarized for wave periods dose to the inertial period

and becomes increasingly elliptical, and finally linear, as the wave period deviates from the inertial

period and becomes shorter. The intrinsic wave period can be calculated from the ratio of the major to

the minor axis of the elliptic which is the same as the ratio c,f the intrinsic wave frequency w' to the

Coriolis parameter f. The orientation of the major axis of the elliptical hodograph is aligned with the

wave propagation direction (KUNDU, 1976).

The values obtained from the spectral analysis and shown in Figure 8 were used to calculate the

parameters of the ellipses a_ a function of height. The results are shown in Figure 9. The middle and

right-hand panel parameter:_ were derived first. The curve on the right shows the orientation of the

ellipses in terms of degrees north of east. The values range from _ 15" near 16 km to _60" near 19

kin. The middle curve shows the ratio of the major to minor axes of the ellipses as a function of height
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which should be the same as the ratio of the intrinsic frequency to the Coriolis parameter, if the

intrinsic frequencies are low. The range of frequencies in the frame of the mean wind varies from

approximately one to six times the Coriolis parameter. The curves on the left represent the mean wind

components in a coordinate system shifted 30" north of east. The rotation angle was chosen somewhat

arbitrarily based on the propagation direction shown in the lower part of the right-hand panel. More

justification for the choic-_ will be given in the next section.

HINES (1988), using a fit-by-eye of an ellipse to the SATO AND WOODMAN (1982a) data, found a

propagation direction toward northeast, similar to our findings. COT AND BARAT (1986) also

determined propagation directions that were rotated 40" or more from the zonal wind direction,

consistent with the obser_,ation by PFISTER (1985) that lower stratosphere inertio-gravity waves have

a cross-wind propagation component.

Horizontal Wavelength

The difference between th_ observed periods and the intrinsic periods deduced in the last section is due

to Doppler shifting by th_ mean wind. For a horizontal mean flow Uo, the earth-fixed and intrinsic

frequencies are related by:

_,,'=_-khU 0 (3)

where k h is the horizontal wavenumber. The value of _ is fixed in this case to _=27r/28 hr, but _'

varies considerably with h_'ight, as shown in Figure 9. We have chosen the value of _'= 2.5.f which

corresponds to the height range below 17 kin. In this range, the shear in the meridional wind is

essentially zero which sho_dd eliminate the effects due to vertical advection of the cross-propagation

shear which I_IINES (1988) has discussed. Also, the propagation direction is fairly constant with

height. The mean wind component parallel to the propagation direction is 20 ms -1 at 16 kin.

Although the magnitude of _' is known, the sign can still be either positive or negative corresponding

to waves propagating fast.,r or slower than the mean wind. A choice of positive _' leads to a

horizontal wavelength of 3_85 kin. The wavelength is rather long, raising questions about whether

coherent oscillations of the type that we observe can exist over such extensive regions. The parameters

lead to values of _'=2-f ne.ir 18 km where the mean wind is 10 ms -1 and _'=l.8.f near 19 km where

the mean wind is ,5 ms "l. The implied intrinsic frequency values at higher altitudes do not agree with

the values shown in Figure _,t.
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coordinate system rotated 30" north of east. The eastward component is indicated by the dashed fine

and the southward component by the solid line.
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The alternative choice of negative _' leads to a horizontal wavelength of 700 km, and an implied

critical level would occur at a height where U0=7.7 ms "l. A level where w'=f would occur when

U0=12.6 ms -1. The latter condition is satisfied between 16.5 and 17 km which corresponds to the

height where the rapid chsnge with height of the ellipse orientation and _'/f ratio first occurs. The

former condition, i. e, the critical level, corresponds to the height around 18 kin, which is also the cut-

off height above which the wave amplitudes diminish rapidl.y to the uncertainty level. The arguments

in favor of the choice of negative _' are still circumstantial at best, but the derived parameters seem to

explain more features of the observations than the alternative choice. The values of _' inferred from

the calculations between 16 and 18 km would lead us to expect a linear decrease with height in the

ratio of _'/f such that the value should be _1 near 17 km and close to zero near 18 km. The

uncertainty in the spectral calculation makes it unlikely that ratios less than one can be achieved since

both velocity components will fluctuate around the uncertainty level. Below 18 km where the

amplitudes are above the uncertainty level, the amplitude ratio curve still shows behavior different

from the expected behavior, but that is perhaps not unexpected since the waves must be highly

nonlinear in the height range where the intrinsic frequency has values between f and zero.

In earlier work, CADET A_ID TEITELBAUM (1979), MAEKAWA et al. (1984), and PFISTER. (1985)

have also interpreted the disappearance of subtropical inertia-gravity waves near 18-20 km as being due

to critical level absorption. However, BARAT (1983) and COT AND BARAT (1986) have observed

inertial wave structure up to 29 km at mid-latitudes.

Vertical Wavelength

Visual inspection of the wind profiles in Figures 1 and 2 reveals that wavy structures for both May

1982 and April 1983 have vertical scales on the order of 1-3 kin. Spatial power spectra of the radial

wavenumber have been computed for the 1983 data for the height ranges 7.5-15 kin, 15-24 kin, and

7.5-24 kin, and are plotted in Figure 10. The near-vertical wavenumber spectra of the zonal and

meridional velocity components are denoted by solid and dashed lines, respectively. The most

noticeable feature is the pr,._sence, in the 15.0-24.0 km height range, of a strong peak at 2.2 km. The

peak is absent in the 7.5-15.0 km range.

The absence of the vertical wavelength structure below 15 km may be an indication that the

oscillations are generated near the tropopause, perhaps by inst:sbility or ageostrophy in the subtropical

jet, but the waves generatec by such a mechanism would be expected to have a broad range of spectral

components rather than the extremely coherent structure seen in the observations. In this respect,
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HINES' (1988) suggestion of an orographic source is very appealing since all orographic waves will have

the same vertical wave number. Thus, even a spectrum of mountain waves with a range of horizontal

wavelengths will show coherence in the vertical direction. As HINES (1988) has pointed out, the

absence of the waves below the tropopause can be explained by the variation in the Brunt-Vaisala

frequency with height. The San Juan radiosonde data corresponding to the observations in May 1982

show an increase in the Brunt-Vaisala frequency by a factor of _3 between the troposphere and lower

stratosphere. The vertic_d wavelength of waves propagating upward through the troposphere is

expected to decrease by thv same factor, and the effect would explain the characteristics of the vertical

wave number spectrum shown in Figure 10. Our vertical wa_'elength estimates are in good agreement

with the values found in the earlier studies that we have already cited several times.

A vertical wavelength of _2 km and a wave period of _24 hr gives a vertical phase velocity of 2.3 cm

s-t, in rough agreement with the values estimated by inspection of Figure 1.

DISCUSSION

There are a great many similacities between the characteristics of the waves observed during the seven

days in May 1982 and the waves that were present in the data sets analyzed by HINES (1988) and

earlier by SATO AND WOODMAN (1982a) and MAEKAWA et al. (1984). The vertical wavelengths

are comparable, the heigh; range over which the waves are observed is the same, and even the

propagation direction is similar, being 30-45" north of east. HINES' (1988) suggestion that the source

of the waves is orographic i_ consistent with the similarity in the features observed not only in the two

data sets discussed here but in hundreds of hours of other observations at Arecibo. The winds above

Puerto Rico change less than would be expected at a midlatitude site, but, nonetheless, the strength of

the flow and the direction change as a function of season and as disturbances propagate through the

area. Waves generated by instabilities in the subtropical jet are unlikely to have characteristics as

consistent as those that are observed. Also, the orographic source explains the coherence in the vertical

wavelength structure.

Generally, the analysis of l(:e waves assumes a steady wind that produces waves that are stationary

with respect to the groun:l and have zero frequency in the earth-fixed reference frame. Our

observations show that the earth-fixed frequency for the waves corresponds to a period around 26 hr.

The uncertainty in the spectral analysis does not exclude a period of 24 hr which can be explained by

the strong diurnal variation in the surface winds on the island of Puerto Rico. We are not aware of

any theory for lee waves prcduced by diurnally varying flows, but we surmise that such a flow would
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produce oscillations with earth-fixed frequencies corresponding to the frequency of the forcing. HINES

(1988) attributed the vertical phase progression to random fluctuations in the mean surface winds,

although he did not discuss the possibility of a strong periodicity in the surface winds. MAEKAWA et

al. (1984) also found evidence of a wave component with a period in the earth-fixed reference frame

close to 24 hr, although their observations only covered a period of approximately 2 days which is

generally too short for a meaningful analysis of 24-hr oscillations.

One feature of HINES' (1988) analysis not borne out by our data is his suggestion that the rotation in

the wind vector with height or time is due to the vertical advection of the cross-propagation shear

component. The intrinsic frequency which varies between zero and 2.5.f is sufficiently small to explain

the wind vector rotation without the need for the vertical advection effect. Also, we have found that

the perturbation winds show an elliptical pattern even at heights where the shear in the cross-

propagation wind component is essentially zero. The observations of THOMPSON (1978) would also

argue against the importance of the vertical shear advection effect, to the extent that the source of the

waves he observed is the same as we are postulating for the Arecibo data. Since his observations in the

southern hemisphere showed a predominant rotation in the winds that was in the opposite sense to the

northern hemisphere observations, the importance of the Corioiis force is implied.

The inferred horizontal wavelength of _700 km is somewhat long when compared to the dimensions of

the island of Puerto Rico, but a half wavelength is comparable to its length. For the orographic

forcing mechanism to explain the observations, the entire island must be involved in producing the

oscillations rather than a few of the prominent peaks which have much shorter horizontal scales.

We have emphasized the similarity in wave parameters over long periods and the coherence of the

oscillations at Arecibo where the day-to-day changes in the mean flow are small. However, variations

in the flow are expected to produce changes in the wave characteristics if the source is the orography.

CADET AND TEITELBAUM (1979) found evidence in their balloon data of a change in the vertical

scale as the mean wind varied which is consistent with the predictions of lee-wave theory. PFISTER

(1985) and MAEKAWA et al. (1984), albeit with a short two-day data set, also found evidence of

modulation of the wave amplitudes with time.

CONCLUSION

The quasi-inertial period structure in the lower stratosphere shown in our observations at Arecibo,

Puerto Rico, appear to be typical of the results of a number of other studies. We have summarized a
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number of diverse studies that describe observations of such structures with a variety of high-resolution

measurement techniques. The indications are that quasbinertial period waves are a ubiquitous feature

in the lower stratosphere, similar to what is observed in the oceans. The waves do not propagate

rapidly, but the associated velocity amplitudes of 3-10 m/s imply that a significant amount of energy

is associated with the low-frequency modes.

The indications are that ihe waves are generated by the flow over the island topography, as suggested

by HINES (1988), but w{th a strong diurnal periodicity in the earth-fixed reference frame probably

associated with the diurnal fluctuationsin the surface winds. The low frequency in both the earth-fixed

and intrinsicreference frames lead to waves with characteristicsgenerally associated with inertic_

gravity waves.
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MOMENTUM FLUXES OBSERVED BY THE MU RADAR

UNDER A STRONG VERTICAL-WIND CONDITION

IN THE TROPOSPHERE AND LOWER STRATOSPHERE

Kaoru Sato

Departmen; of Geophysics, Faculty of Science, Kyoto University

Kyoto 606, Japan

1 Introduction

Using the MST radars, large variations of the vertical wind have been observed in the tro-

posphere and lower strato,,_phere at some locations around the world. Previous studies of the

phenomena examined, mainly, the differences in the frequency power spectra of the vertical

wind between active and quiet conditions, and the correlation with the background wind. Ac-

cording to these studies, ti_e strong vertical-wind variations are due to gravity waves caused

by topographic effects.

This study investigated the vertical momentum fluxes in a strong vertical wind condition.

The profiles of vertical momentum fluxes provide a lot of ut_eful information for the examination

of the wave interaction with the mean wind and/or wave characteristics, such as, the direction
of wavenumber vectors.

2 Calculation method of momentum fluxes

The momentum fluxes are ,examined as a function of frequency. The method of calculation is

an expansion of Vincent and Reid's (1983). Vincent and Reid suggested that the momentum

fluxes are calculated from the difference between mean squares of radial velocities measured by

two beams with equal and opposite angles =1=0around the zenith. The present method makes

use of two frequency power spectra of radial velocities of the symmetrical beam pair instead

of the mean squares. The 1;wo frequency power spectra of the radial velocities, Pv±o(_,), are

expressed as,

Pv±o(w) = P,(w). sin20 + P,,,(w). cos_0 4: u(w)w(w), sin 20, (1)

where w is frequency, P_(_.) and P_(w) are frequency power spectra of zonal and vertical

velocity components, respectively. The term u(w)w(w) in (1) shows the zonal component of

the vertical momentum flux due to oscillations having each frequency, which is calculated

immediately from (1),

u(w)w(w) = Pv+,(w) - Pv_,(w)
2sin20 --' (2)

Thus the total vertical momentum flux is obtained in such a way as,

= _ u(w)w(w). (3)
w

Similarly, we can obtain not only the spectra of zonal and meridional components of the

momentum fluxes but also the power spectra of three wind components, from the power

spectra of 5 radial velocities measured using 5 beams tilted to east, west, north, south, and

vertical.
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Figure 1: The profile of w-component at each height measured with the vertical beam during

the whole observation period. The components having periods of less than 1 hour were removed

by a lowpass-filter. The interval of horizontal lines show a velocity of 3 ms -1.

3 Data description

The wind data measured by the MU radar in January 1986 were analyzed. Figure 1 shows the

w-component profile at each height during the whole observation period. Apparently the wind

feature is divided into the first and second halves, which are referred to as quiet and active

periods, respectively. In the active period, we observe large velocities of more than 3 m s -1.

Since the observation period is about 48 hours for each period, we can examine statistically

the components with periods of less than 10 hours. In view of a large vertical scale of the

disturbance, the wind components with vertical scales of larger than 1.5 km were analyzed.

On the other hand, in the mean horizontal wind profile, large differences between in the

active and quiet periods were not seen. An almost-westerly subtropical jet having a maximum

speed of about 70 ms -I was observed at around a height of 11 kin. Decreasing in height above

13 kin, the horizontal wind was only several ms -1 at 20 kin.

4 Profiles of vertical momentum fluxes

The contour maps represented in Fig. 2 are vertical profiles of the frequency spectra of the

momentum fluxes in the active and quiet periods. In the quiet period, there are no large fluxes

at the whole period and height ranges. On the other hand, for the active period, in both zonal

and meridional components, large momentum fluxes are distinctly seen in the height ranges

between the height just above the jet of 13 km and 19-20 kin, at almost all frequencies.

Broken and solid contour lines show negative and positive values of the momentum fluxes,

respectively. Whereas the meridional components are distributed evenly between positive and

negative values of momentum fluxes, the zonal components are biased toward negative at all
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Figure 3: Vertical profiles of the momentum fluxes for each frequency range for the active
period. Top and bottom figures show the zonal and meridional components of the momentum
fluxes, respectively.

frequencies. This indicates that most of the gravity waves, which contribute to the momentum
fluxes appearing in Fig. 2, have wavenumber vectors directing westward.

Another important feature of Fig. 2 is that the momentum fluxes at almost all frequencies
vanish at around 20 kin. If such a profile shows the absorption of each gravity wave due to the

existence of the critical layer, the waves must have the same horizontal phase velocities which
equals the mean horizontal wind speed at 20 km of several ms -]. The phase velocity is very

small as those of topographic waves.

Next, in order to examine differences for the frequency and the detailed vertical profiles in
the active period, the momentum fluxes are examined for three frequency ranges, i.e., 3-10,

1-3, and 0.3-1 hours, having the same length in the log scale. The vertical profiles for each

and the total frequency ranges are shown in Fig. 3. From the figure, it is found that in this
case, larger fluxes were observed in the lower frequency ranges.

It is also interesting that a peak value is observed at about 18 km in the profiles of both
zonal and meridional components for the frequency range of 3-10 hours. This suggests the

negative acceleration of the mean horizontal wind above the height of the peak, and the positive

below it, which tend to strengthen the vertical shear of the mean wind. The magnitude of
the accelerations calculated from the vertical profile of the momentum fluxes is about 15

m s-_day -1 at the maximum, which is very large for lower stratospheric values. Moreover, it is
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Figure 4: Vertical profiles of the normalized correlation between wind components for a fre-

quency range of 3-10 hours in the active period. Left and right figures show the correlations

of vertical component with zonal and meridional components, respectively.

noteworthy that such profiles cannot be explained unless the selective transmission of gravity

waves propagating upward happened.

5 Correlation between horizontal and vertical components

Using the power spectra of horizontal and vertical components and the momentum fluxes, we

can estimate the normalized correlation between horizontal and vertical component at each

frequency. Figure 4 is a result for the frequency range of .3-10 hours. The values for a height

range of 15-17.4 km in the left figure could not be estimated because of the small power of the

zonal component u. Large correlations are observed above 18 km which is the height of the

peak in the momentum flu>: profiles shown in Fig. 3. This is also consistent with the concept

of the selective transmission of gravity waves.

6 Summery and discussion

An analysis was made of rr_omentum fluxes in an active period of the vertical wind compo-

nent. As results, several interesting features of the gravity waves were revealed, such as, large

momentum fluxes, the selec;ivity of directions of wavenumber vectors, small horizontal phase

velocities over the whole ranges of the frequency analyzed, a large acceleration of the mean

wind, and the selective verti:al transmission. Some of the results are well explained if the fluc-

tuations are due to topographic waves: The slight variation of the mean wind cannot cause the

frequency modulation, but probably cause the phase modulation. And the MU radar observed

the phase modulation as fluctuations in time.

However, some features like large momentum fluxes observed only in the lower stratosphere

is a remained issue to be explained. Furthermore, it is neceesary to investigate the interactions
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between gravity waves the mean flow in more detail. If the momentum fluxes observed in this

study are due to topographic waves, there is a possibility that only a few parts of the spatial

phases of the waves might be appeared in the data. The momentum fluxes must be averaged

not only temporally but also spatially.

Some results about the momentum fluxes obtained here are different from those by other

studies, e.g. the vertical profiles obtained by Fritts et al. (1989) through a similar analysis

using the lower-stratospheric wind data measured in March by the MU radar, and the distri-

bution for the frequency in the mesosphere examined by Reid and Vincent (1987). Probably,

these differences are due to the differences of the seasons, heights and synoptical situations.

Statistical analyses and accumulation of case studies will be important.
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MOMENTUM FLUX MEASUREMENTS AT 69°N AT VHF

Iain M. Reid and R(idiger Riister

Max-Planck-Institut fiir Aeronomie, Katlenburg-Lindau, FRG

The mobile SOUSY VHF (53.5 MHz) Radar, located near Andenes (69°N, 16°E) on

the Norwegian Island of Andeya, has been used to measure the component of the

upward flux of horizontal momentum per unit mass in the SW-NE plane. This is

u'w'sin¢ + v'w'cos¢, where ¢ is 45 °. The individual covariance terms cannot be sepa-

rated using the present beam configuration (shown in Figure 1), but clearly, the arith-

metic sum of the utw ' and v'w _ terms may also be obtained. This is useful, because

on some occasions the signs of the individual flux terms may also be inferred. The

horizontal anisotropy (v '2 - u '2) may be derived directly from the mean square radial

velocities.

The application of m_:.ltibeam Doppler radar techniques in the mesosphere at VHF is

greatly facilitated at l_.igh latitudes in summer by the presence of the so-called "Polar

Summer Mesopause Echo" or PMSE. As shown in Figure 2, signal-to-noise ratios as-

sociated with the PMSE are very high, and the echoes exhibit excellent continuity in

height and time. Consequently, data acceptance rates are high in all six beams.

Note that spectral widths measured in the vertical beam of the radar are narrowest

near the region of high,est power, possibly suggesting a partial reflection type backscat-

ter mechanism (see RI:]ID and CZECHOWSKY, this volume). Mesospheric velocities

measured over Andene3 axe sometimes large enough to produce aliasing in off-vertical

beams (Figure 3), but they are also found to be ali,_sed in the vertical beam, on oc-

casion. This requires a radial velocity exceeding 13.1 m s -1. The large fluctuations in

velocity are also accompanied by relatively large covariance terms.

Values of the density normalized flux in the SW-NE plane in the 83-90 km height

interval obtained in two periods during the MAC/SINE campaign in summer 1987 are

shown in Figure 4. When averaged over a period of about 3 h, during which radar

returns from the PMSE were the strongest observed during the whole campaign, values

reached 47 m 2 s -2 near 86 km. Over a two day period earlier in the campaign, maximum

values were found to be about 16 m 2 s -2, and this probably represents a more typical

mean result. It is also shown in Figure 4. In both causes, values are generally positive

and tend to increase with increasing height. Frequency decomposition of the results for

the longer interval, after the tidal components are removed, indicates that the largest

contribution comes from motions with observed periods in the 10 min - 12 h range.

The major contribution to this comes, in turn, from motions in the 10 min - 6 h period

range. The mean flow acceleration in the SW-NE plane due to motions in the 10 rain

- 12 h period range is negative and takes a mean value of about 116 m s -1 day -1. The

corresponding value for the three hour period :ls 273 m s -1 day -1. A more complete

description of these results is given in REID et al. (1988) and ROSTER and REID

(1988)
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1 INTRODUCTION

Meso-scale wind and temperature fluctuations in the middle atmosphere arc sometimes

better described by using frequency and wavenumber spectra, since they are observed as

a superposition of many waves with various frequencies and wavenumbers. Dewan and

Good [1986] and Smith e_ al. [1987] proposed a vertical wavenumber spectrum of gravity
waves that are saturated due to convective or Kelvin-Helmholtz instabilities. Smith et

al. predicted the sat Jrated vertical wavenumber spectrum F_(m) for the horizontal wind

velocity u as follows:
N 2

F.(m) = Sin---_ (1)

where m and N are l_he vertical wavenumber and Brunt-V_isRl_i frequency, rcspectively.

From (1) the spectra Fr,/To(m) and FN2(m) for the normalized tcml)crature T_/To

and N _ fluctuations, respectively, are further deduced as

N _

FT,/TO(m)- 1Og2m 3 (2)

N 4

f._(m) = 10---_ (3)

where T t, To and g :tre the perturbed temperature, background temperature and the

acceleration of gravity, respectively.

Fritts et al. [1988] have shown quantitative agreement between the model and the

observed F,(m) and FT,/Vo(m) in the troposphere _md lower stratosphere. This paper

is concerned with simultaneous observations of F_(ra) in the troposphere, lower strato-

sphere and mesospherc coaducted in October 1986 with thc MU radar in Shigaraki (35°N,
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136°E), Japan, and observations of FT,/To (m) and FN2 (m) with radiosondes launched fiom
the MU radar site.

2 WIND VELOCITY SPECTRA

The zonal and meridional wind velocities were determined at 5-21 km on 17-24/25 Oc-

tober 1986 from MU radar observations with a range resolution of 150 m. Because (1)

includes the dependence of F,(m) on the background N _, we need to separate the en-
tire observation range into height regions with constant N 2. We have chosen 5-9 km

and 12-19 km altitudes for a spectral analysis as tropospheric and stratospheric regions,
respectively, where N 2 averaged over each height ranges was 1.1 × 10 -4 and 4.1 × 10 -4

(rad/s) 2.
Mesospheric wind motions were likewise monitored during daylight horns (0800-1600

LT) on 13-31 October 1986. Wind velocity profiles were determined at about 65-85 km
with a height resolution of 600 m. Since a simultaneous observation of a temperature
profile near mesopause was not available, we assumed N 2 = 4.3×10 -4 (rad/s) 2 b_e(l on
the CIRA 1972 model at the altitudes of the radar observation.

An autocorrelation function is calculated from the fluctuating wind coml)onent after

applying a pre-whitening, and removing a linear trend. Further, it is multiplied by a
Harming window in order to suppress end effects due to finite data series, then it is

Fourier-transformed into a wavenumber spectrum F_(m).

Fig. 1 shows the observed F_(m) in the mesosphere (M), lower stratosl)here (S) and
troposphere (T), together with the model values of F_(m) calculated from (1) by using a

value of N 2 in each height region.
In the mesosphere the zonal spectrum has a slope near -3 between m=2 and 4 × 10-4

(c/m) showing a good agreemcl_t with the model, while the meridional spectrum has

a slightly steeper slope in the same wavenumber range. It is also suggested that the
dominant vertical scale of gravity waves in the mesosphere is longer than about 10 kin.

In the lower stratosphere, the meridional spectrum agrees fairly well with the model,
showing a slope of-3 or somewhat steeper for m > 6× 10-4 (c/m). The zonal spectrmu
exhibits a similar shape between m = 1.4× 10 -4 and 8× 10-4 (c/m), although the spectral

density is smaller by about 25 %. The dominant vertical scale can bc estimated as 2-
3 kin. The zonM spectrum in the lower stratosphere, however, is largely enhanced at
m > 1× 10 -3 (c/m) compared to the meridional spectrum and the model, which can be

explained by the finite range volume effect [Fukao et al., 1988]. Therefore, the inerem_e of

the zonal spectral density at large wavenumbers is artificial, and the mcridional spectrum
appears to be a better measure of the spectral amplitude of the gravity wave field.

The spectral density of the zonal and meridional components in the mesosphcre and
lower stratosphere are similar at large wavenumbers, while the meridional spectltml has

larger energy density at small wavenumbers where the spectrum is not saturated.
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Figure 1: Vertical waw;number spectra determined fiom the MU radar observations in
October 1986. Thick solid and broken lines show zonal and meridional components, re-
spectively. Thin chained and broken lines correspond to the model spectrum predicted
by equation (1) in the lower stratosphere and mesosphere, and in the troposphere, re-
spectively.
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Spectra in the troposphere are enhanced relative to the model by a factor of up to 2
excluding the spurious enhancement of the zonal spectrum at large wavenumbers. This

suggests that the meso-scale wind fluctuations in the troposphere are not entirely caused
by gravity waves, but include considerable contributions from other activities such as
convective motions.
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Figure 2: The mean FT, iro(m) observed in summer (left panel) and winter (right panel).
The spectra with larger amplitudes are from 18.5-24.5 km altitude (stratosphcre), while

the others are from 2.0-8.5 km (troposphcre). The dashed curves correspond to the
model spectrum, where the mean N 2 in the troposphcre and stratosphere arc assumed as
1.84x10 -4 and 6.49x10 -4 (tad/s) 2 in summer, and 1.75x10 -4 and 6.36x10 -4 (tad/s) 2

in winter, respectively.
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Figure 3: The same as Fig. 9 except for N _ spectra.

3 NORMALIZiED TEMPERATURE AND N 2 SPECTRA

By using a high-resohttion radiosonde sounding system we have observed temperature

profiles over the MU observatory for 34 times during five campaigns in stunmer fi'om

30 June to 4 Septembe:: 1987, and for 31 times in winter from 22 Deccmber 1986 to 25

February 1987.

Figs. 2 and 3 show FT,/To(m) and FN_(m ) determined in the 2.0-8.5 km (tropo-

sphere) and 18.5-25.0 km (lower stratosphere) altitude ranges, where a vcrtical spacing

to calculate T'/To and N 2 was 150 m.

Except for the spectrum detected in summer stratosphere the slope of the mean spec-

tra is very near -3 and -:I for FT,/ro(rn) and FN_(m), respectively, for 6x 10-4>m>3x 10 -3

(c/m), which suggests _,n agreement with the model described by (2) and (3). On the

other hand, the mnplitudes of the observed spectra in the summer stratosphere were as

small as 0.4 of the mode[ valuc, implying that the gravity waves were not fully saturated.

To summarize, vertical wavcnulnber spectra of meso-scale fluctuations of the wind

velocity, normalized temperature and N 2 in the middle atmosphere are fairly well ex-
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plained by a saturated gravity wave spectrum. However, we have also found that the
gravity waves in the summer stratosphere significantly above the tropopause are not
necessarily fully saturated.
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In March 1986 the MU radar (FUKAO et el., 1985) measured the radial

velocity in the upper troposphere and lower stratosphere at 200 zenith

angle at every 30 ° of azimuth during four days and at every 450 of

azimuth during two days. The pulse length was 300m and the range gates

were spaced 282km apsrt in altitude. A jet stream was present during

the entire period, with overhead peak winds usually between about 12 and

13km ranging from 35 to 58m/s. The altitude of the tropopause increased

from about lO.bkm on the first two days to abo,lt 12km on the last day.

The mean radial velocity variance averaged over range gates cen-

tered from 10.43 to 19.17kmwas calculated every four minutes and then

averaged over 20 minutes. Some examples of the variance versus azimuth

are shown in Figure ]. The points are the measured variances and the

curves are least-square fits of a function consisting of the mean plus

the first two azimuthal harmonics. The mean is proportional to the

total kinetic energy per unit mass of the fluctuation field and the

first harmonic is proportional to the vertical flux of horizontal momen-

tum per unit mass. In the panel labeled No. 640 the azimuthal variation

is dominated by the first harmonic. In No. 645, only 20mln later, there

is in addition a large second harmonic. In Nos. 660 and 700 the second

harmonic is much larger than the first harmonic, but in No. 700 the

second harmonic is much smaller than in No. 660. These examples show

that the variance varies strongly versus both azimuth and time.

Figure 2 shows eech successive fitted curve centered on records

from 29.0h to 80.3h fzom the beginning of the experiment, with the zero

for each successive curve shifted to the right by l(m/s) 2 The four

examples in Figure 1 are indicated by the arrows between 40 and 50h in

the margin of the upper panel. The predominance of the second harmonic,

particularly during the amplitude peaks at 42, 57, and 70h is clearly

visible. Note also the phase changes during the 42 and 70h peaks.

The amplitudes ao, el, and a2 and the phases 41 and 42 of the

harmonic terms are plo::ted versus time in Figure 3. These quantities

are averages over lh p::otted every 4min. It is evident that a 2 is

rather well correlated with a0, but that a I is only slightly correlated.

There does not appear t:o be any overall correlation or relation between

41 and 42.
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Byusinga modelof the azimuthalvariation of variancedueto
gravity waves(VANZANDT,1985),weshowthat probablyall of the ob-
servedazimuthalvariations canbeexplainedwith a frequencyspectrum
similar to observedspectrabut with a restricted azimuthaldistribution
of propagationvectors.
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4

Figure i. Examples of the variance versus azimuth. The data

points are averaged over 20min. The curve is the sum of
the mean and first and second harmonics fitted to the data

points by least squares. Note that the panels labeled

No. 640 and No. 645 are only 20 minutes apart.
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We calculated the momentum flux from the variances in each opposite

pair of azimuths averaged from 10.43 to 19.17km presented in paper

4.6.5, using the method of VINCENT AND REID (1983). The mean momentum

flux over the days when each pair was separated by 300 and over the days

when each pair was separated by 450 are shown in Figure I. The curves

are the least-squares fits of a sinusoid to the points. The mean momen-

tum flux over the entire six-day period was about 0.20(m/s) 2 towards

270 ° .

The denslty-welghted momentum flux versus altitude and the result-

ing acceleration of the mean flow averaged over the entire period are

shown in the upper and lower panels of Figure 2. The total zonal ac-

celeration varied smoothly from _ +2(m/s)/day at 8-10km to

= -l.5(m/s)/day above 15km.

The inferred drag above the peak of the Jet stream is in reasonable

agreement with that inferred by PALMER et al. (1986) from the needs of

large-scale circulation models. The change in sign of the acceleration

across the peak of the jet stream is thought to be due to filtering by

the Jet stream of zonally propagating gravity waves.
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Summary

Velocity fluctuations in the middle atmosphere show a continuum of scales
without dominant features and their power spectra often decay with
frequency f as f-_. Plots of noise processes with such power-law spectra also
show varying fractal plane-filling properties, characterized by a fractal
dimension (D), for different values of spectral index 13.A relation between

and D has been numerically found and its validity is verified for limiting
cases. Fractal dimension D is obtained for middle atmospheric velocity data
from the Poker Flat radar. Variations of D follow those in _ from an earlier

analysis but show an offset of 0.1-0.2 even after corrections for outliers,
gaps, and additive noise. We surmise that a fractal representation of the
atmospheric velocity field may be possible.

Introduction

Our interest in colored noise and its fractal behavior relates specifically to
time series of wind fluctuations in the middle atmosphere, monitored with
sensitive high-power radars (see e.g. Rtittger, 1987). The power spectrum
density (PSD) S(f) of these series often follows a power-law variation with
frequency (f)

S(f) = at fl_ for a < f < b; or,13,a and b constants (1)

with spectral index 13in the rangeof 1-3 at temporal scales of 0.1-100 hr and

spatial scales of 1-1000 km (Balsley and Carter, 1982). The PSD is usually
obtained through classical spectral estimation techniques (Marple, 1987), and

the spectral index 13is found by a least-square fit.
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Colored noise phenomena with PSD given by equation (1) shows trends and
fluctuations at many scales, but conspicuously lack any dominant ones. Their
only interesting parameter is the spectral index 13. The frequency f may

correspond to variations in time or space. The important f-_ or 13=1 case is

widely encountered in electronics and astronomy [see e.g. D'Amico and
Mazzetti, 1986]. Velocity fluctuations in fluid turbulence have energy spectra

with 13=5/3 in the inertial range, and as high as 13=7 in the viscous range [see

e.g. Tennekes and l.amaley, 1972].

Figure 1 shows an interesting aspect of colored noise, viz. the varying extent
to which it fills-up the plot region for different spectral indices 13. It is

apparent that white noise (13=0) tends to fill up a strip of the plane, but noise

for larger 13lacks this property. Plane-filling characteristics of irregular

curves can be described through fractals - objects and constructs with
fractional dimension [see e.g. the treatises by Mandelbrot 1977, 1983]. We
examine whether this aspect of colored noise processes can be used for
analysis of atmospheric velocity data with power-law spectra. The idea
originated from a similar analysis of f-i noise in galactic X-ray emissions
using the concept of scale invariance and fractals by McHardy and Czerny
(1987), hereafter MC.

In this paper, we first briefly outline the relevant definitions of fractal
dimension D. An empirical relationship between the index 13and dimension

D for colored noise is then numerically obtained, and its validity is
confirmed for limiting cases. The relationship is used for analysis of middle-

atmospheric velocity data from the Poker Flat radar with known spectral-
index profiles. Profil,_s of D and 13are shown to be remarkably similar. We

conclude that fractal analysis is a qualitative method for finding spectral
index of colored noise processes. Implications of our results are briefly
discussed in the conte_t of atmospheric dynamics models.

Relationship between Fractal Dimension D and Spectral Index

The concept of fract_.l dimension of irregular objects, that show structure
over a very broad range of scales, is originally due to Mandelbrot [1977,
1983]. Briefly, we note that a unique length cannot be attributed to an

irregular curve. If the length L is measured with yardsticks of length Is, put

end-to-end along the ,,_urve, then L(p.) increases as _t is made successively

smaller. For a straight line, L does not depend on _t. But extremely irregular
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FIGURE 1. Plane-filling characteristics of plots of simulated time series with

different values of spectral index 13for i--1 to 2000 samples. White Gaussian

noise, (a) 13=0, almost entirely fills a strip about zero amplitude. Noise with

(b) I_=1.5 and (c) [3=2.5 has successively weaker plane-filling characteristics.

curves tend to fill up the plane. The fractal dimension D' is defined by

Mandelbrot, through a linear dependence between log L(la) and log(_t), as

d log L(g) _ 1-D'= -D (2)
d log 12

A straight line has a fractal dimension D'=I. An extremely irregular curve
that tends to fill up the plane has D'-2. Many examples e.g. the triadic Koch
curve with D'=1.262, have been discussed in detail by Mandelbrot(1983).
Fractal curves on a plane are self similar under magnification.
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For a noise time series F(t) of duration T, MC defined a length metric L(_t)

L(g) = I F(t+p) - F(t) I dt (3)

which is in same uni_s as F, and used D -- D'-I as the fractal dimension for the
time series. This circumvents the need for two different scaling factors or
magnifications, in amplitude and time, necessary for defining the fractal
dimension of a physical time series or random process. Such processes are
self-affine and calculation of a meaningful value of fractal dimension for
them is not straightforward [see e.g. Voss, 1988]. We follow MC's usage
below.

A noise process with a power-law spectrum defined in equation (1) entails a
hierarchy of scales, :similar to that encountered for fractals, with a suitable

assignment of power to each scale. Intuitively, we expect 13and D to be

related as suggested by figure 1. We are, however, unaware of specific
results relating these 1_o quantities except for a conjecture due to D. Raine

13= 2(1-D); for 0 < 13_ 2 (4)

mentioned in MC. Raine's resuk is an approximation valid only for 13<2, as it

implies negative D fo:r 13>2. The _f-1 time series analyzed by MC have D=0.6,
sufficiently close to the value D=0.5, given by equation (4).

White noise with 13=0almost entirely fills up a strip in the plot region as

shown in figure 1. Or: this basis, D' approaches the topological dimension 2
of an area, while D approaches 1. On the other hand, the PSD for a process

with very large 13can be approximated with an impulse at the low-frequency

end. Realizations of F(t) become sinusoids at this frequency. D' for a sinusoid
approaches 1 (same as for a straight line), and D vanishes. These limiting
results are verified analytically in the Appendix. It can also be shown
analytically that D=0.5 for f-1 noise.

An empirical relation,.;hip between D and 13has been found by computing
dimensions D for time series of colored noise with known indices 13.

Generating series wifla 13---0 and 13=** is simple. Algorithms also exist for

generating series with specific 13,e.g. a ta'_ weighting of white noise gives

13=1, and integrated white noise has 13=2. For arbitrary 13,the time series can
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be generated as the sum of n weighted sinusoids (Bemra, Rastogi and Balsley,

1985, hereafter BRB) of random frequencies fi and in arbitrary phases ¢_i,

II

F(t) = tx']_ ___1__sin(2n;fit +¢i); tx' constant

i=l (f_i/2)

(5)

Frequencies fi should be chosen from a uniform distribution on log(f) to

reduce computation time. Hereafter a unit sample interval for t is assumed.

Time series with 40960 points were generated using equation (5) for 13=0.0

to 2.5 at steps of 0.5. For a sequence F(i); i=l,..N, L(m) was computed over
three decades of m in 1 octave steps. The following modification of equation
(2) with end corrections, that converges to it for N >> m, was used

L(m) _ N--J_mN_m IF(i+m) - F(i)l
(6)

The metric L(m) was averaged over several independent sequences of 4096
points. D was then obtained by linear least-square regression of L(m) versus
step size m on a log-log plot.

The results for average D versus 13are shown in figure 2. The uncertainty in

regression analysis has been shown at three standard deviation level, on
either side, following Brownlee(1965). Raine's linear equation (4) is exact

for 13=0 and 13=1, but is only approximately valid for 1< 13< 2.

Fractal Analysis of Middle Atmosphere Velocity Data

The data used in this study are time series of 30-min averages of zonal and
meridional winds (sampled every 15-min) in the troposphere and
stratosphere, derived from 3-min radial velocity observations with the Poker
Flat radar in Alaska. Averaging makes it possible to resolve the radial
observations along three beams into three orthogonal wind components at
each height, assuming statistical homogeneity at horizontal scales < I0 km.
Data is available from 3.8 km to 36.4 km heights at increments of 2.2 km, but
is deemed unreliable below 6.0 km due to ground-clutter, and above 21.4 km
due to weak echoes. Two 20-day periods cover winter (1-20 Jan 1984) and
summer (12 Jun-1 Jul, 1984). This data has been analyzed by BRB to show

the variability of spectral index 13for zonal and meridional winds with
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FIGURE 2. Plot of fractal dimension D versus spectral index 13for simulated

time series obtained as sums of scaled random-frequency sinusoids in
random phase (shaded circles), and Gaussian white noise (solid circle, G).
Bars indicate the uncertainty in estimating D, at three standard deviation
level on either side. Diagonal line shows Raine's result. The difference in the
two cases for if-.-0 is significant as discussed later in the text.

altitude and season. Figures 3(a) and 3(c) show typical summer and winter
time series of zonal _md meridional winds.

The time series are contaminated with sporadic but sparse spikes, termed
outliers, and have several gaps. Outliers and measurement errors contribute
to a white-noise component that influences the results of fractal analysis.
Following scheme has been used to find oufliers : (i) Trend is identified as
the running median at a long time scale. (ii) Running mean and standard
deviation of the detrended series is obtained at a local time scale. (iii) ff a data
point in the detrended series is not within three standard deviations of the
local mean, it is classified as an outlier and the corresponding point in the
original series is flagged as a gap. Finally, (iv) a local running median filter
is applied to eliminau; low amplitude spikes. Effect of this scheme on the time
seres of figure 3(a) i.,;shown in figure 3(b). The scheme detects outliers with
a high probability (>99%) but, as in communication in a noisy environment,
it occasionally accept.; an outlier or rejects a good data point.

Fractal dimension D of the time series with detected ouliers and data gaps is
obtained in two steps. First the length metric L(m) is found for several scales
m, and then D is oblained by least-square regression of log[L(m)] versus
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FIGURE 3. Examples of horizontal velocity time-series at 10.33 km altitude
from Poker Flat radar and effect of outlier detection. (a) unedited meridional

velocity during summer, (b) same as above with outliers suppressed and local
median filtering, (c) unedited zonal velocity during winter. Summer
observations are noisier.

log(m). Contribution to the metric L(m) from outliers and points in the gaps
is excluded. To account for the number M of excluded points, the second
factor in equation (6) for L(m) is replaced by N/(N-m-M). This is found to
be satisfactory if the number of outliers and gaps is small and their total
duration M << N.

BRB used classical spectral analysis and linear least-square regression of PSD
estimates on a log-log plot to find the index [3. Their results show distinct

altitude and seasonal variations in [_, with minima near tropopause. In
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classical spectral analysis, data must be equispaced and so gaps must be
interpolated. BRB used cubic splines with zero end-point derivatives to
interpolate across some long gaps. Still, interpolation across gaps may
introduce discontinuities with spurious spectral trends that decay as f-2. Data
windows with spectral sidelobes decaying at rates steeper than the index [5of

the time series suppress the effect of discontinuities. BRB used a triangular
data window with f-4 sidelobes. Overall uncertainty in their [5 estimates, at

the one standard deviation level, is _+0.1.

For comparing D profiles obtained by fractal analysis with 13profiles of

BRB, the latter haw; been scaled to a corresponding dimension D 0 using the

empirical [5-D relation of figure 2. Comparison for summer data is shown in

figures 4(a) and 4(d), and for winter, in 4(b) and 4(e). Uncertainty in the D[3
profiles is not explicitly shown but is of the order of +0.15 at the three
standard deviation level. Altitude and seasonal variations in D mimic those of

D 0. Profiles of D are, however, systematically offset to values higher than

D_. The offset is lar_;er for the noisier summer data.

Initially this offset is attributed to residual white noise due to measurement
errors. Suppose observations r(t) are obtained by adding white Gaussian
noise g(t) to a signal s(t). Then for high signal-to-noise ratio, the length

metrics for r, s and g at scale _t are related quadratically through

I_(la) = Ls2(i.t) + Lg2(_) (7)

MC used this to correct for additive white noise of known variance.

Corrected profiles of D for the Poker Flat data have been obtained for
several plausible valaes of measurement error (0.1 to 0.6 m/s) assumed
constant at each altitude. Correction causes a shifting of the fractal dimension

D to values closer to D 0, but as the measurement error depends on altitude, it
may also distort the D profiles. This distortion is more severe for the very
noisy summer data. For the winter data, correction preserves the shape of D
profiles. Figures 4(c) and (f) show the corrected winter D profiles for a
measurement error of 0.6 rn/s at all heights. Agreement with D o profiles is
very reasonable in the stratosphere, above 10 km. The disparity of the two
profiles in the troposphere may be due to small-scale gravity waves that
weaken the assumption of homogeneity mentioned before.
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We find that fractal analysis gives values of D that are in reasonable

agreement with DI3values inferred from BRB, though systematically higher
by about 0.1-0.2. MC also found an offset of 0.1 in their analysis of 'l/f
noise'.
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FIGURE 4. Comparison of fractal dimension D (line) with DI_(solid circles)

obtained from 15-profiles of BRB using figure 2. Panels show profiles for (a)
summer zonal (b) winter zonal (c) winter zonal with 0.6 m/s measurement
error (d) summer meridional (e) winter meridional (f) winter meridional
with 0.6 m/s measurement error. Uncertainty in D at the three standard

deviation level is shown by vertical bars and is about +0.15 in DI3.
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Discussion

Fractal analysis provides an alternative method for examining processes with
a power-law PSD. It is simpler and more efficient than Fourier methods,
which need ~N log2N multiplications and additions, and evaluation of

trigonometric functions, for N data points. For scales m selected one octave
apart, fractal analysis uses only ~N log2N additions and positive-difference

operations. In typical applications, computational effort for fractal analysis
may be two orders of magnitude smaller. Fourier methods restrict the

number of data points to powers of 2, and these must be equispaced
(requiring interpolation through gaps and nonuniform points). These
restrictions are entirei!y relaxed in fractal analysis. Finally, processes with
power-law PSD's exhibit strong trends which may produce spurious f-2
components in the PSD estimates, if not removed by detrending (which
requires extrapolation) or suppressed by windowing. In fractal analysis
trends are automatically removed at each scale.

Fractal analysis results do not afford a proper discrimination between

processes with 13> 2 as D becomes small, or between processes differing

only slightly in 13.It systematically gives D higher than Di3by 0.1-0.2. We

surmise that two processes with the same index 13 but with different

distributions may haw; different fractal dimensions. An example of this is
shown in the 13-D diagram of figure 2 for white-noise. Gaussian white noise
has D=I, but an arbitrary sum-of-sinusoids distribution gives D=0.9.

Qualitatively, however, all the major characteristics of data are preserved in
fractal analysis. We do not expect it to replace the more accurate and more
involved spectral analysis methods. Our results and discussion suggest that it
may be an efficient exploratory data analysis tool for screening large
amounts of data as an aid to refined spectral analysis.

Observed PSD of horizontal velocity components show features that cannot
always be uniquely and unequivocally associated with a field of two-
dimensional turbulence (Gage,1979), a universal spectrum of buoyancy
waves (VanZandt, 1982), or with refined wave and turbulence models (see
e.g. Liu and Kato, 1985:). We find that time evolution of the velocity field is
reasonably consistent with a fractal description.. Power-law behavior of
spatial spectra of atmospheric velocity field and its intermittent nature
suggest that a fractal description may hold for its evolution in space and time.
We surmise that generalized scale-invariance fractal model of Lovejoy and
Schemer (1986) may e.g. provide an alternative phenomenological basis for
describing the atmospheric velocity field.
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Appendix : Fractal Dimension D for limiting cases

We first show that D=I for a white Gaussian random process g(t). Without

loss of generality, let g(t) be zero mean with variance s 2. Then z(t)=g(t+l.t)-

g(t) is also zero-mean Gaussian with variance 2s 2 and the expected value of

Iz(t)l is 2s/_l/"2 (see e.g. Papoulis, 1984). For T>>_t, by ergodicity

L(tt) = ! fT-_ I g(t+tt) g(t) I dt - 2 T
- -_ (A.I)itJ0

SinceL(l.t)0_It-l,from equation(2)itfollowsthatD=I.

We next consider a process y(t) with 13>> 1, and show that D vanishes

asymptotically. With a power-law PSD for y(t) given by equation (1) over

the frequency range (a,b) and a large index 13, y(t) may be replaced by a

single sinusoid of the form c sin(2rrat). In this case

L(g) = c I sin{2_a(t+g)} - sin(2rcat) I dt (A.2)
g

Writing the integrand about t+g/2, and integrating over many half cycles of

the sinusoid i.e. for "r>>(2a)-l, the integral reduces to L(g)---(4acT) sin(ag).

For g<<l/a, L(g) tends to a constant (4acT), and D vanishes asymptotically.
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i. Introduction

Attempts to observe the vertical motion field at synoptic

and larger scales with MST radars have been frustrated by the

presence of geophysical "noise" in the data, consisting of

contributions from small scales, which usually overwhelms any

large-scale signal in the data. Two recent such studies are

Nastrom, et al. (1985), and Larsen, et al. (1988), where more

detailed discussion of the background and references to other

work may be found. Briefly, all past studies were performed in

regions where the noise produced by orographic effects could not

usually be ignored, and the possibility existed that a station

well-removed from such effects might be able to observe the large

scale components in the wind field under more general conditions.

Ongoing studies at the Flatland radar in central Illinois, USA,

are testing this hypothesis, and an emerging result is that the

vertical motion field is still dominated by scales smaller than

synoptic even though orographic effects are evidently not

present. This effect is clearly reflected in the power spectrum

of observed vertical motions (Figure i) as there is much more

energy at periods less than an hour or so than at the longer

periods commonly associated with synoptic-scale activity. While

the high frequency variations in vertical velocity are apparently

due to a field of propagating gravity waves which are Doppler

shifted by the ambient horizontal wind field (VanZandt, et al.,

1989), we expect that much of the energy at longer periods

represents contributions from large-scale motion systems such as

baroclinic storms. However, it is not obvious that temporal

noise at a single station can in general be filtered to provide

mean values consistent with a large spatial average (i.e.,

application of the Taylor hypothesis). Consequently, the

observation of synoptic _cale vertical motions, believed to be of
the order of a few cm s- , may not be straightforward even at

Flatland. The removal of orographic effects from the signal has

simplified the problem to the extent that the nature of the other

noise sources may now be more clearly identified. In this study

we explore some preliminary aspects of these problems: first, we

show that periods of enhanced variance of the vertical velocity

during the interval studied are associated with the passage of
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fronts at the surface, and identify a frontal signature that is

sometimes present in the lower troposphere. Second, we

illustrate the difficulties in verification of the Taylor

hypothesis by comparing radar observed vertical motions with

those deduced from the horizontal wind field derived from the

twice daily NWS rawinsonde network, and discuss the problems

associated with such a comparison.

2. Analysis

Time series of vertical velocity over Flatland during March

1987 are shown in Figure 2. As at other locations (e.g.,

Ecklund, et al., 1982), the presence of quiet and active periods

is clearly visible , though the variance in all cases is less at

Flatland than that at mountain sites (Green, et al., 1988).

Along the bottom of Figure 2 letters have been entered to

indicate when cold (c), warm (w), occluded (o), or quasi-

stationary (qs) fronts passed or were in the vicinity of

Flatland. Note that every active period is coupled with a front.

While this coupling suggests the interesting notion that fronts

are a source of gravity waves, it hinders the prospects for

retrieving large-scale vertical motions from the Flatland data

because the geophysical "noise" apparently increases just at

those times when we hope to find a large-scale signal.

Next we will examine two cases in detail to illustrate two

points: first, there is a frontal passage "signature" which is

found in the vertical velocity time series in some cases; second,

matching the signal at one station with a system which may be

moving at an unsteady rate (as fronts and storms often move) and

which may be decaying or developing at a rate which is only

poorly defined by the 12-hourly radiosonde observation schedule

is an extremely complex problem. Weather systems are fully

three-dimensional phenomena which move and change with time. The

Flatland radar provides a continuous record of the vertical

motions over a single place. The morphology of the low-frequency

signal in vertical velocity varies from case to case, depending

upon the rate and consistency of the movement of the weather

system and upon its rate of development or stage of maturity. In

some cases the vertical velocity pattern seen by the radar is

relatively clear and the synoptic feature easily discerned, while

in other cases it is less well defined. We illustrate each of

these points with specific examples.

First, we consider a relatively clear frontal passage

signature. On 5 March a weak low was over western Illinois at 06

UTC with a warm front moving northward across the Flatland area.

The front passed near 05 UTC based on surface observations at

Champaign airport, although the National Weather Service analysis

indicated it was weak and nearly dissipated by 12 UTC (Figure 3).

The time series of vertical velocities display upward motion

ahead of the surface frontal passage and downward motions behind

it below 5 km, as seen in Figure 2 and as shown more clearly by

the analysis of hourly mean velocities in Figure 4. This pattern

was noticed by Larsen and Rottger (1982) in connection with the

passage of a warm front, and we have seen it in other cases of
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1200 UT, MARCH 5, 1987

Figure 3. Synoptic weather map for 5 March 1987, 12 UTC.
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Figure 4. Vertical motions over Flatland on 5 March 1987. Upward
is positive.



372

moving fronts. While it seems unlikely that the regions of

upward and downward motion, located only about 4 hours (150 km if

the front moved at i0 m s -I ) apart, are due to the front itself

as envisioned in the Norwegian frontal model, we suggest it is a

typical frontal signature. Perhaps it is due to a gravity wave

launched by the front and propagating along with it, similar to

the events discussed by Gall, et ai.(1988).

A front is in many respects a mesoscale feature, yet in

order to compute vertical motions aloft from conventional data we

must rely on t:_e radiosonde network which reflects only larger

scales. For example,' around Flatland the triangle of radiosonde

stations at Peoria, Salem and Dayton has an average leg-length of

379 km; which defines the smallest horizontal scale observable

with this network over Flatland. The vertical motions computed

using the continuity equation applied to the rawinsonde data over

this triangle for 5/00 and 6/00 UTC; using Ekman pumping as a

lower boundary condition following Nastrom, et ai.(1985), are

compared with radar time-averages in Figure 5. The radar data

represent 6-hour averages and the error bars are the standard

error of the mean. At 5/00 UTC the agreement appears

satisfactory and at 6/00 UTC it appears excellent. However, the

period centered at 6/00 UTC is depicted by plus-signs, and that

centered at 6/03 UTC by triangles. The point of this case is

that the rawinsonde based values are mean values over a very

large area ( of course, the radiosonde data contain errors and

noise which we have ignored here), and the radar time mean is for

only one positiDn inside the triangle, and that even though the

radar is near the center of the triangle the time-mean and the

space-mean do not necessarily match. This lack of agreement does

not imply any e:cror in either the radar data or the radiosonde

data, but rathel? points to the frequent mismatch of the scales of

motion they rep]Tesent. In the next case we will use NMC data to

further illustrate this notion of "shooting at a moving target".

On March 18th an occluded front approached Flatland from the

southwest, as illustrated in Figure 6. The mean vertical motions

during this period were upward as seen in Figure 2 and also in

Figure 7. Green, et ai.(1988), used proxy indicators of vertical

motions, such as clouds and precipitation from surface reports

and widespread echoes from storm surveillance radars, to

corroborate the upward motions observed by the radar. Also, they

noted that the 12-hour forecasts from the NMC model showed that a

region of large vertical motion apparently passing Flatland

during this periDd. Computation of diagnostic vertical motions

specific to the i_latland location suitable for comparison with

time-mean radar observations was outside the scope of their

study.

We have computed vertical motions over Flatland based on the

NMC gridded analyses using the kinematic method, the adiabatic

method, and the adiabatic quasi-geostrophic omega-equation

method. Details follow Nastrom, et ai.(1985). The results for

18/12 UTC are compared with 9-hour averages from the radar in

Figure 8. There is general agreement among all curves that the

motion is upward at several cm s -_, although at any height the

comparison is not exact. We have included radar curves for two
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overlapping time periods as the radar is representative of only
a portion of one NMC grid square and the storm is moving in this

square throughout the averaging period. The large difference

between the radar means and the indirect values at lowest heights

may reflect a difference in the scales each data type represents,

or it may be due to limitations of the indirect methods, such as

the neglect of latent heat release and the use of linear

interpolation.

3. Conclusion

The Flatland radar experiment has provided copious data on

the vertical motions over flat, mid-continental temperate

latitude terrain, free from the effects of mountains.

Preliminary studies of this data set have begun to shed light on

the nature of the motion field in the absence of nearby sources

of orographic effects. In particular, qualitative comparison of

the time series of vertical motions with those times when surface

fronts passed or were near Flatland indicates an association with

active periods throughout the troposphere and sometimes into the

stratosphere of large lateral extent. Further, the passage of

fronts is often accompanied in the lower troposphere with a

region of upward motion ahead of and downward motion behind the

front, creating a signature of frontal passage.

Although these effects related to synoptic-scale features

are easily observable, the observation of the large-scale

vertical motion itself in the midst of larger amplitude signals

due to small-scale motions is difficult. The absence of

orographic noise in the signal has greatly facilitated the

understanding of other aspects of the signal, such as the effect

of doppler-shifted gravity waves, and this understanding may

contribute to the eventual understanding of the large scale

signal as well.

Verification of the Taylor hypothesis through comparison of

temporal and spatial averages is also difficult. In particular,

it has become clear that the velocity and rate of decay or

development of a given system will determine the horizontal scale

to which a temporal average at the radar site can be properly

compared. Only in certain cases will this scale match that of

the radiosonde network.

Each of these questions has important implications for the

future application of MST radars. It appears that a very

promising avenue for future progress is using multiple radars to

assess spatial correlation features.
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I. INTRODUCTION

The clear-air Doppler radar technique (also called the wind-profiling or

MST radar technique) has been applied to a wide range of meteorological

problems since its development by WOODMAN and GUILLEN (1974) and GREEN et al.

(1975). Nevertheless, research on some important problems has been frustrated

by the location near mountains of most such radars. The resulting geophysical

noise is especially serious for studies of the vertical velocity w.

When the background wind was light ROTTGER (1981) and ECKLUND et al.

(1986) found that frequency spectra of w were flat at frequencies less than the

buoyancy frequency and broke to a steep negative slope at higher frequencies.

Very similar w spectra are observed in the ocean, which GARRETT and MUNK (1972,

1975) modelled as a spectrum of internal gravity waves. Thus, we can be confi-

dent that the light-wind spectra are due to gravity waves.

But when the background wind speed was large at stations near mountains,

ECKLUND et al. found that the spectral amplitude increased and the shape

changed so as to become quite inconsistent with the light-wlnd spectra, as

shown in Figure I. They suggested that these changes might be due to mountain

waves. Also, NASTROM et al. (1985) found that large-scale vertical velocities

due to synoptic-scale motions could be extracted from the data when the wind

blew toward the mountains from the plains, but not when the wind blew over the

nearby Rocky Mountains in Colorado.

It appeared, therefore, that a clear-alr Doppler radar located in flat

terrain might be used to study vertical gravity wave motions and large-scale
vertical motions. For this reason we have constructed the Flatland radar near

Champaign-Urbana, Illinois. In this paper we show that the behavior of w over

flat terrain is indeed quite different from that near mountains.

2. DATA AND METHODS

The Flatland radar is located about 8km west of Champaign-Urbana,

Illinois, at 40.05°N, 88.38°W, 212m above sea level. It operates at a fre-

quency of 49.8MHz. The antenna is a 60mx6Om array of coaxial-collinear

dipoles, with a two-way, half-power to half-power beamwidth of 3.20 . The data

analyzed here were taken using 750m pulse lengths and range gates centered from

1.4 to 19.4km, but useful data were usually obtained only from 2.2 to 16.4km,

with often a region of missing echoes Just below the tropopause. The Doppler

spectra have 128 points with a velocity resolution of 5cm/s and an unaliased

velocity range of ±3.2m/s. Further details, including examples of the data,

are given in GREEN et al. (1988).
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Fig. I. Frequency spectra of w in the troposphere. The thin

curves are from southern France (ECKLUND et al., 1986) and the

two thick cu*_es are from Flatland. The spectra labeled QUIET

and ACTIVE were obtained when the wind speed was S 5 and _ 20m/s,

respectively.

The vertical velocity was measured about every 2 i/2min from 2 March 1987

until April 1988, with brief interruptions due to power failures, etc. and a

break of about six weeks in the summer of 1987. Power spectra were derived

from time series of two different lengths, 6h and 45h. If more than three

successive observations were missing or eliminated by the quality control

procedures described in GREEN et al. (1988), that is, if there was a gap

greater than lOmln, then the time series was rejected. The data in the ac-

cepted time series at each altitude were then linearly interpolated to uniform

153s intervals. The mean and a linear trend were removed and power spectra

were derived by Fourier transform of the resi_Aals.

Horizontal wind and temperature profiles were obtained from routine

National Weather Se_rice radiosonde ascents from Peoria, Illinois, about 130km

northwest of the Flatland radar. The data were obtained from the National

Climatic Data Center.

3. RESULTS: 6h SPECTRA

We computed 6h spectra from March through May centered on the nominal

times of the routine radiosonde balloons, 0000 and 1200Z (1800 and 0600 90°W

time). Because the number of individual 6h spectra is large, we are able to to

study the dependence of the spectra on altitude, wind speed, buoyancy fre-

quency, etc.
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In Figure 2 the spectra are stratified by altitude from 2.2 to 15.6km.

For each mean spectrum the number N of 2indlvldual spectra that enter the

average and the variance VAR in (cm/s) are given in the table in the upper

righthand corner. (Note that the 15.6km spectrum is unreliable because N is

only 4.) During this period the average tropopause altitude was about 12km.

There is no discernible altitude variation within the troposphere and the

stratosphere, but at long periods the spectral energy density in the tropo-

sphere is about a factor of two larger than in the stratosphere.

7
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Fig. 2. Frequency spectra stratified by altitude. The mean

spectrum at 15.6km is noisy because it includes only 4 spectra.

These spectra closely resemble the QUIET spectra at ALPEX in Figure I,

even though the mean horizontal wind for the present spectra was about 15m/s,

and they are quite different from mean spectra at sites near mountains (see

BEMRA et al., 1985; KUO et al., 1985; ECKLUND et al., 1986; and LARSEN et al.,

1988).

We have also sorted the spectra at 3.7 and 5.2km according to the buoyancy

frequency N B over the layer from 700hPa to 500hPa (about 3.0 to 5.5km) at

Peoria. There was not any detectable difference between the mean spectra

corresponding to the upper and lower quartiles, with N_ - 13.1 and
B

9.6xi0 -rad/s, respectively, a ratio of 1.4. This is surprising, since in Fig.

2 the ratio of 1.8 between the stratosphere and the troposphere causes very

notlcable differences.
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In Figure 1 the mean of the Flatland spectra for quiet and active condi-
tions is superimposed on the ALPEX spectra. Under all wind speeds the Flatland

spectra resemble the QUIET ALPEX spectra.

This behavior is considered in more detail in Figure 3, where the spectra

at 3.7km are plotted in five bins as a function of the horizontal wind speed WS

at the same altitude from Peoria, with boundaries at O, 3.5, 5.5, ii, and

22m/s. These boundaries were selected so that each bin contains at least =I0

spectra and so that the boundaries lie near minima in the histograms of wind

speeds. The spectra, have been multiplied by WS to separate them visually and

divided by VAI_ to fecilitate comparison with model Doppler-shlfted spectra in

the next section.

FLFITL£ND IJ 6-HR

Fig. 3. Observed spectra and model Doppler-shifted spectra

stratified by wind speed. 9The observed and model spectra

have been multiplied by WS- and _, respectively, and divided

by the variance.

It is evident that the shape of the spectra changes systematically with

increasing WS. As WS increases, the slope becomes more negative at periods

longer than the buoyancy period I/NB and less negative at shorter periods, so

that the spectra become flatter. The spectra at other altitudes behave in much

the same way. It will be shown in the next section that this behavior is

consistent with Dopplec-shifted spectra of gravity waves.
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Figure 4 shows that VAR increases as a power of WS.

discussed more quantitatively in the next section.
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Fig. 4. Variance (cm/s) 2 versus wind speed WS (m/s). The

lower set of points are the observed variances VAR. The

upper set fitted by the straight llne are the total variances

estimated using the Doppler-shlfting model.

A. COMPARISON WITH MODEL DOPPLER-SHIFTED GRAVITY WAVE SPECTRA

Models for Doppler-shifted atmospheric gravity wave spectra have been

presented by SCHEFFLER and LIU (1986) and by FRITTS and VANZANDT (1987). In

this paper we have chosen to use the approach of FRITTS and VANZANDT, because

we are more familiar with it. Their model has been programmed numerically in

order to be able to investigate the effect of their approximations to the

physics of gravity waves and to the assumed intrinsic spectrum. We found that

the physical approximations had little effect on the results. On the other

hand, some of the approximations to the intrinsic spectrum are important.

FRITTS and VANZANDT used p - 2 in order to obtain solutions in closed

form. We find that in order for the calculated spectra to agree with the

observed spectra, p must be nearer 5/3, as is commonly observed.

We also considered two different extreme azimuthal distributions. First,

we used the approximation of FRITTS and VANZANDT, with a fraction a+ of the

wave energy propagating in the azimuth of the background wind vector and a

fraction i - a+, in the opposite direction. Alternatively, we assumed that a

fraction a+ was uniformly distributed in the semicircle containing the wind

vector and a fraction I - a+, in the opposite semicircle. We found that if a+
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1/2, then either distribution can fit the observed spectra, but that if a+ is
not near 1/2, then the model spectra cannot fit the observed spectra.

The model Doppler-shifted spectra depend on the wind speed through the

scaled background wind speed _ - WS/c., where c, is the characteristic horizon-

tal phase speed, estimated to be - 5._m/s in the troposphere (FRITTS and CHOU,

1987).

In Figure 3 the: model Doppler-shifted spectra are shown by the curves

labeled with _. In order to s_ale them in the same way as the observed spectra

they have been multiplied by _- and divided by the variance over the same

frequency range as the observed spectra. It is evident that the shape of the

model spectra changes in the same way as the observed spectra. The results at

other heights are similar. From this we conclude that the observed spectra are

Doppler-shlfted gravity wave spectra.

The Doppler-shl_ting model assumes that the shape of the intrinsic

spectrum is invarian_, independent of altitude, wind speed, wind shear, etc.

However, agreement with the observed spectra could be achieved even if the

intrinsic shape did ,vary somewhat at large wind speeds, since at large _ the

intrinsic spectrum is strongly smeared in frequency.

VAR for the observed spectra was plotted versus W$ in Figure 4. However,

VAR is only a fractlc,n of the total variance in the gravity wave field, since

part of the wave enezgy has been Doppler-shifted outside the observed frequency

range, especially toward higher frequencies. The total variances estimated

using the model are also plotted in Figure 4.

For WS _ 3.5_/_ the total variance varies almost linearly withoW _
proximately as WS-" , or, to compare variance with variance, as (WS')v[4aP-This.

increase must be taker into account when comparing spectra taken at different

wind speeds.

It is important I:o note that if the intrinsic wave spectrum were generated

at an altitude very different from 3.6km or in a location very much farther

away than Peoria, then the Doppler-shifted spectra and the total variance could

hardly depend so strongly on the local wind speed. The implication that the

gravity wave field is locally generated is at variance with usual ideas con-

cerning the sources of' the gravity wave field, and it may have important

consequences for the physics of the field.

5. CONCLUSIONS

We find that the _high-frequency vertical velocity spectra are essentially

invariant in the troposphere and in the stratosphere, but that the spectral

density is about a faczor of two larger in the troposphere. The spectra

stratified by wind speed are quite consistent with Doppler-shlfted gravity-wave

spectra. This implies that the shape of the intrinsic spectrum is only weakly

dependent on the wind speed. The variance of the spectra increases about as

0.8 power of the wind _peed at the same altitude at Peoria, 130km away. The

Invariance of the shape of the intrinsic spectrum and the strong dependence of

the variance on the local wind speed indicates that the gravity wave field is

generated at about the same altitude and not very much farther away than

Peoria.
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A FIRSTD)OK AT CONVECTION WAVES OBSERVED BY AN ST RADAR

Kenneth S. Gage, Warner L. Ecklund and David A. Carter

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, Colorado 80303

i. INTRODUCTION

KUETTNER et al (1987) have recently drawn attention to the occurrence of

internal gravity waves in the free troposphere above the convectively active

planetary boundary layer. These waves, commonly referred to as "convection

waves", appear to have their origin in the free troposphere when the planetary

boundary layer is disturbed by either two-dlmensional convective rolls or

three-dimensional convection. In some respects the convection waves resemble

lee waves that are forced by the flow over rough terrain. Convection waves

could be an effective agent for momentum transfer in the free atmosphere even

in regions of relatively flat terrain. If they are as ubiquitous as some early

studies seem to indlcste, they may play an important role in the momentum

budget of the free atmosphere.

Aircraft observations of convection waves have been conducted for several

years and the results are summarized in KUETTNER et al. (1987). Related

numerical experiments have been reported by CLARK et al. (1986). Typical

results indicate that convection waves occur in synoptic regimes that favor

active convection in the planetary boundary layer and considerable vertical

shear in the horizontal wind through the low to mid-troposphere. Under these

circumstances lower tropospheric convection provides an undulating lower bound-

ary surface to the flow in the free troposphere above. Waves forced in the

free troposphere by w,rtical displacements above the convectively active

planetary boundary la),er can propagate to tropopause altitudes within an hour.

Under favorable conditions these convection waves become trapped in the tropo-

sphere and may resonantly develop into preferred modes that are highly tuned to
their environment.

Much of what we know of convection waves has been learned from a series of

case studies performed by NCAR scientists from flight data of individual

events. Typical characteristics for convection waves (KUETTNER et al. 1987)

are wavelengths of 5-15 km, and vertical motion amplitude of 1-3 ms -I. The

waves often are observed to altitudes greater than 9 km and they tend to occur

when vertical wind shear exceeds 3 x I0 -a s-*.

The NCAR studies used aircraft to fly to regions where synoptic conditions

favored the formation of convection waves. When present, convection waves

should also be observable by wlnd-profillng Doppler radar. For this study we

examined the vertical velocity data observed by the VHF radar that was located

near Liberal, Kansas during the Pre-Storm experiment (AUGUSTINE AND ZIPSER,

1987). Vertical velocity observations from this radar were made throughout

most of Hay and June 1')85. During this period several episodes of possible

convective wave activii_y could be identified in the observations. However, the

clearest example was found at the end of the experiment on 29 June 1985.

2. THE VHF RADAR LOCATED NEAR LIBERAL, KANSAS

The Aeronomy Laboratory participated in the Pre-Storm experiment by

providing a 50-Mhz wind-profillng Doppler radar. The radar provided by the

Aeronomy Laboratory had been constructed for operation on Christmas Island. The

Pre-Storm Experiment ir the spring of 1985 provided a convenient test for the



ORIGINAL PAGE'

BLACK AND WHITE PHOTOGRAPH
385

VHF radar before it was shipped to Christmas Island. The site that was

selected for the VHF radar is located on the Kansas-Oklahoma border near the

town of Liberal, Kansas. The 50-Mhz antenna shown in Figure 1 is a phased

array (i00 m x i00 m) similar to that used in the Platteville radar described

by ECKLUND et al (1979). The VHF radar was comprised of three fixed beams.

One beam was directed vertically and the remaining two beams were directed 15"

off-Zenith in the north-south and east-west planes. Peak transmitted power wa_

40 kW and average power was 200 Watts. The pulse width was 4 microseconds

which corresponds to a range resolution of 600 m.

Figure i. The VHF radar located near Liberal, Kansas.

During the Pre-Storm Experiment the radar was operated in the full 3-beam

mode giving continuous measurements of horizontal and vertical velocities. At

the end of the experiment the radar was operated for several days in a

vertical-only mode. It was operating in the vertical-only mode on 29 June 1985

for the observations presented here.

3. OBSERVATIONS OF CONVECTION WAVES ON 29 JUNE 1985

Atmospheric gravity waves are commonly observed in multi-height time

series of vertical velocities measured by wind-profiling Doppler radars.

Examples can be found in ECKLUND et al (1981, 1982, 1986) and GAGE et al

(1981). Most of these observations were made by radars located in or near

regions of mountainous terrain and were influenced by lee waves. Observations

over flat terrain have recently been reported by GREEN et al (1988) using the

Flatland Radar located in central lllinois. The terrain near Liberal, Kansas

is also very flat so that the observations presented here should not have been

influenced by orographically-generated lee waves.

Multi-height time series of vertical velocities observed by the VHF radar

are shown in Figure 2 and Figure 3. The observations contained in Figure 2

show the vertical velocities measured above the radar for the entire day.

While there is some evidence of activity before noon, the major activity com-

mences about 1300 CST. This activity appears to start at the lowest heights
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Just prior to 1300 and by 1500 extends throughout the troposphere. The

tropopause is located near 12 km and there is little evidence of the activity

extending into the lower stratosphere. A clear pattern of quasl-monochromatlc

waves can be seen in Figure 2 between 1800 and 2000. These waves are shown in

greater detail in _'igure 3. The waves achieve their maximum amplitude of about

2 ms-* Just after 1900 CST. While the waves show some amplitude variation with

altitude there does not appear to be much phase change with altitude• The

waves have a period of close to 20 minutes and achieve their maximum amplitude
near 8km.

Vertical Wind Velocity
LIBERAL ST RADAR

20•0
19.8

18.6

IT.4 "

16.2

15.0

29 June 1985 (CST)

I 2,0 rns "1

(upward)

Figure 2. Multl-helght time series of vertical velocities observed near

Liberal, Kansas on 29 June 1985.

4. SYNOPTIC SETTING

The waves observed on 29 June 1985 occurred on a hot, dry day. At 0950

CST surface observations at Liberal, Kansas indicated a temperature of 84_F and

dew point temperature of 48°F. At 1545 the surface temperature had risen to

99°F and the dew point temperature was 54°F. Broken clouds were reported at

i0,000 and 20,000 feet.
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Figure 3. Convection waves seen in multl-helght time series of vertical

velocities near Liberal, Kansas during the afternoon of

29 June 1985.

Synoptic maps for 850 mb and 500 mb are shown in Figure 4 and Figure 5,

respectively. A thermal low circulation is evident at 850 mb over the south-

western U.S. Southerly flow prevails east of the low center in the Texas-

Oklahoma Panhandle region. At 500 mb a weak ridge is located over the Rocky

Mountain states and the winds over the Texas-Oklahoma Panhandle are from the

northwest. The wind reversal evident between these two levels can be seen

clearly in the 30 June, 00 UT (29 June, 1800 CST) wind sounding for Dodge City,

Kansas, reproduced in Figure 6.

A satellite photograph of visible clouds at 2330 UT is shown in Figure 7.

A few isolated convective cloud masses are evident over eastern New Mexico,

northern Texas, western Kansas and western Nebraska. The central U.S. is

relatively free of clouds.



388

Figure4. Synopticanalysisfor
850mbat O0UTon30June1985.

Figure5. Synopticanalysisfor
500mbat O0UTon30June1985.
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Figure 7. Visible satellite imagery for the Central U.S. at 2330 UT on
29 June 1985.

5, INTERPRETATION

The synoptic conditions on 29 June 1985 favored the development of convec-

tion waves over western Kansas and Oklahoma. A well developed southerly flow

over this region was overlain by a northwesterly flow at mid tropospheric

altitudes. Warm surface temperatures and the relative lack of clouds as-

sociated with the dry atmosphere led to intense convection in the planetary

boundary layer.

Radar observations of convection waves presented here complement the

aircraft observations reported by KUETTNER et al (1987). The aircraft samples

only one altitude but gives an excellent spatial picture of the waves. The

radar gives excellent temporal resolution of the wave motion simultaneously at

many altitudes, but only at one location. If it is assumed that the aircraft

and radar are looking at the same general phenomenon, it is possible to draw

some tentative conclusions concerning the nature of the waves that are being

observed by the radar.

Since the background wind changes with altitude, vertically-propagating

waves will be Doppler shifted as discussed, for example, by BRETHERTON (1969)

and GAGE (1989). In the frame of reference of a ground-based observer, waves

generated by the convection below should retain their wavelength, period and

phase velocity as they propagate upwards through the region of wind shear.

ORIGINAL PAGE
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However, within the framework of the WKB approximation, the intrinsic frequency

n the frame of reference moving with the wind is Doppler shifted by an amount

•_ where_ is the mean wind velocity and _ is the wavenumber. The intrinsic

frequency is related to the observed frequency _o by

- _o - _._ (i>

If _ changes with height in s_ch a way that the upper-level wind has an ap-

preciable component opposing K, U.K will become negative and the intrinsic

frequency will increase with height. If the intrinsic frequency approaches the

Brunt-Vaisala frequency, the vertical wavelength will become very large and the

waves will become trapped. It would take a network of profilers such as was

used during the ALPEX Experiment in Southern France to measure the horizontal

wavelength and phase velocity of the waves to demonstrate conclusively that the

interpretation given here is correct.

If we assume the waves are similar to the convection waves observed by

KUETTNER et al (1987), we can estimate the intrinsic frequency from Eq (i).

Using a typical wavelength of 9 km and a wind velocity of 6 ms I we find

A_ - 2_U/A - .0041.s I The observed frequency is 2_/r, or .0052s * for a 20-

minute period wave. Thus, from Eq. (I) the intrinsic frequency is .0093s *

consistent with an intrinsic period of about Ii minutes. From the Dodge City

sounding at O0 UT on 30 June 1985 the Brunt-Vais&la frequency calculated be-

tween the 500 mb and 250 mb levels is .0096s * Evidently, conditions on this

day were favorable for trapping of convection waves. Trapping is also sup-

ported by the fact that the vertical wavelength of the observed waves is very

large and that there is little wave activity extending into the stratosphere.

6. CONCLUDING REMARKS

Observations of vertical velocities by a VHF wlnd-profillng Doppler radar

located near Liberal, Kansas on 29 June 1985 reveal a pattern of wave activity

in the free troposphere that closely resembles convection waves reported from

aircraft measurements by KUETTNER et al. (1987). Synoptic conditions near

Liberal, Kansas on 29 June 1985 favored the formation of convection waves as a

result of strong surface heating and considerable vertical wind shear above the

planetary boundary layer. An analysis of the wave event of 29 June 1985 also

supports the idea that the waves observed on this occasion were trapped in the

troposphere owing to the influence of the background wind shear.

The radar obse_.-vations reported here clearly show the presence of convec-

tion waves and comp].ement the earlier aircraft observations in several

respects. While we have made no attempt here to examine the frequency of

occurrence of conve¢_tlon waves, vertical velocity measurements from wind-

profiling Doppler r_.dars should be well suited for assessing occurrence

statistics of convection waves at any given location. Furthermore, networks of

three or more radars could be used to determine the wavelength and phase

velocity of the waves by techniques discussed in CARTER et al (1989). Future

studies should determine the influence of convection waves on the momentum

budget of the lower atmosphere.
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INTERCOMPARISONAND CALIBRATION OF WIND AND WAVE MEASUREMENTS AT

VARIOUS FREQUENCIES

Marvin A. Geller

Laboratory for Atmospheres

NASA/Goddard Space Flight Center

Greenbelt, Maryland, 20771 U.S.A.

It has now been about 15 years since the first MST measurements were

reported by Woodman and Guillen using the Jicamarca radar. During the inter-

vening years, the grgat value of MST measurements of wind velocities and

turbulence parameter_ has become obvious to the atmospheric community. The

passage of time has brought about a transformation in the MST town,unity from

its early years when its mission was to demonstrate the value of the technique

to the present time _hen its activities have changed toward asking difficult

questions about erro1"s in the technique, how MST measurements compare with

measurements made by other techniques, and how best to utilize MST measurements

for scientific studies.

The topics covered in session 5 concern several of these present issues

being dealt with by the MST community. The session is comprised of papers on

very diverse topics ranging from triangle size effects in spaced antenna drift

measurements to how the MST community can best interact with the satellite

measurements of horizontal winds that will become available with the launch of

the Upper Atmosphere Research Satellite in 1991.
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TRIANGLE SIZE EFFECT IN SPACED ANTENNA WIND MEASUREMENTS

C.E. Meek

Institute of Space and Atmospheric Studies

University of Saskatchewan, Saskatoon, Canada

Abstract: A formula for the "triangle size effect" (the finding of lower

velocities from smaller antenna spacings) is derived for a one-dimensional

pattern on the assumption that noise level is the critical factor. Experi-

mental data from two arrays, each with two available spacings, is shown to

support this assumption.

INTRODUCTION

The spaced antenna method involves cross and auto correlations of

echo amplitude sequences measured on antennas separated by distances of

the order of one radio wavelength. Usually these are assumed to be Gaussian

for theoretical development of analyses to find the mean velocity of the

ground diffraction pattern. The FCA model (BRIGGS, 1968) accounts for a

two dimensional spatial diffraction pattern and pattern decay with time.

The theory assumes that the only reason for a drop in correlation is a

time delay or spatial separation between measurements. Not accounted for

are multiple motions in the same pattern or random noise - atmospheric or

measurement (e.g. digitization). This paper is concerned with the latter.

GOLLEY and ROSSITEH (1970) presented a comparison between wind values

measured with various antenna arrays, finding that the FCA velocity tended

to increase with array size, approaching a limiting value which agreed with

the spatial pattern shift in time found on their large array. They

suggested random noise as a possible cause for this variation - that is

noise has a greater reducing effect on calculated velocity when correla-

tions are high ( as with small spacings). Some numerical simulations (I-D

spatial pattern assumption) were later done by CHANDRA (1978) with the

same conclusions.

The present paper derives an equation for the noise-dependent reduc-

tion in FCA velocity for the 1-D case, and tests it experimentally.

I-DIMENSIONALTHEORY

Figure I illustrates correlation functions which would be measured
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Figure i. Illustration of the effect of noise on the auto

and cross correlations for different antenna

spacings. The dashed lines show the "noisy" case.
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at tworeceiver spacingsfor no-noiseandnoisydatawhena moving,decay-
ing pattern is present.Thefractional reductionin peakcorrelation due
to noise is termedthe "noisefactor", NF. Thesignal-to-nolse,S/N(power)
is givenby NF/(I-NF).

In the no-nolsecase,the correlation function is assumedto be
Gaussian:

(D_Vt) 2 t 2

_(ot)= e½( A2 +_) (I)

where D is the receiver spacing, V is the"true" velocity of the ground

pattern (i.e. it is the result of correcting the apparent velocity,

V a = D/tma x, for effects of pattern decay which shift the measured lag for

peak correlation closer to zero-lag), A is the pattern scale, and C is the

characteristic time (or decay time) in the pattern - both evaluated at

_= 0.61. The width of the auto-correlation (i.e. from (i) with D=0 ) is

t 2 = 1 (2)

a V 2 1

A 2 C 2

The lag for peak cross correlation is

t DV (3)

max V 2 + A 2

C 2

and the peak value of cross correlation is given by

D2 (4)

-2ln(_max)=C2(V2 +_)
G

and ,..--Pm=xare the measured parameters (note thatIn analysis, t a , tma x,

t is the same for any receiver spacing). The pattern parameters are solved
a

from these by the following set of equations.

A2 = D2 (5)
o t 2

-2 in(_max). max
t 2

a

V
O

O (6)
t 2

tmax(-2lnrmaX"t--_- + 1 )
max
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C2 -2 in,max,t2 + t 2
= a max (7)

o

-21n_max

-&
Now suppose the record is noisy, with noise factor e , and assume

that t a is not affected. (In practice it is, but when comparing large and

small spacings, both will have the same ta. ) Then the pattern parameters

can be found from equations (5) to (7) when ].n_max is replaced by

ln_max-_ , and after some pages of manipulation, the ratio of non-nolse

to noisy parameters can be found:

V ° 2_ A2
O

V- = 1 + 02 (8)

A 2 2 & A 2
o o

A2 = I D2

C 2 2 _C_ V 2o

o i + 02 (10)
C--2 = 2AA_ +

(9)

All ratios are seen ";o be greater than I. Thus the pattern scale, "true"

speed, and character:.stic time are always less for the noisy case, and

also the effect is _eater for smaller receiver spacings.

QUALITATIVE EXPERIMEntAL TEST

Two arrays have been used. Each consists of an equilateral array of

antennas with a fourth placed in the centre of the triangle, so that large

(outer antennas) and small (centre compared with each outer) spacings are

available in each array. For the "loop" array these are 116.7 m and 67.5 m

(0.Sk), and for the "main array" they are 270 m (2_) and 156 m. ( In the

case of the main array, the centre is a single dipole while the outer

antennas are pairs of parallel dipoles spaced at ½_and connected in par-

allel - so the noise level could be different in large and small spacings

if interference is a problem - as opposed to digitization noise for ex-

ample.)

Approximately 2 nr of data have been recorded on each array. Each

record was 3.6 min length. In the analysis, cozTelations were calculated to

the same maximum lag. In order that the noise level not change with
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different antenna separation, no data averaging was done, but the data

spacing was varied to give greater maximum lag times for the larger spacing

(the same number of lags was used for all analyses). Every amplitude point

was used for the smallest spacing (810 points), every second point for the

two medium spacings (410 points) and every third for the large (270 points).

The analysis was according to MEEK (1980). Data were discarded if either

the large or small spacing analysis failed. All heights (60-110 Kin) are

lumped together in the results. Histograms for each spacing and for large

and small spacings (when the analysis was successful for both in the same

record) are shown in Figure 2. Since the analysis assumes a 2-D pattern,

the "I-D" pattern scale is estimated by _ , where A and B are the major

and minor axes. This is not entirely accurate, but will have to do for now

since efforts to re-analyse the data as a I-D pattern led to at least 50%

failure in analysis. The figure shows the effects expected from theory -

viz. smaller spacings show smaller V, A," and C.

To see whether the determining factor is the pattern scale, data were

sorted according to the median pattern scale, and medians of the resulting

patterns are shown in Table 1. (Note that none of these pattern scales is

the desired A . They should be closely related in size, but quantitative
o

conclusions cannot be drawn.)

_t reed.

L C med.

AB_'_LL>reed.

TABLE _. Medians of pattern paramter ratios after separation

based on pattern scale

loop array main array

medians medians

51 0.69 0.85 0.83

47 0.69 0.74 0.89

49 0.69 0.83 0.85

49 O. 69 0.76 0.87

# VS _-_S CS

51 0.97 0.92 0.70

54 0.79 0.81 0.83

55 0.95 0.89 0.7_

5O 0.81 0.85 0.81

From the table it can be seen that large versus small spacing effects

are greater for larger pattern scales- except for the velocity in the loop



398

2o

#

0

2O

2O

2O

#

2O

0

0

LOOP ARRAY

S (DE"I:6"?"DS'6?'Sm)

_,0 100 160 Mtras

_ tract eritt IC time

2.0 aac

true velocity

50 ,00 R/,

LOOp ARRAy

pLtte_ _c_e

ratio: S/L
20

#

a

0 characteristic ttu

ratios S/L 20

true vel_lt_

tloJ S/L 20

I

I.(

2°I ;_ <°_,_.°s_.,
"0 100 160 metres

0 2.0 aec

F_///_
0 _o ,/a

RA_ ARRAY

pat t ecn sc_e

I ratioJ S/L

I
i

I.D

j_ characterlst Ic tale

ratio: S/L

r"ff -
1°0

t j_, .... _ooi,,
ratio J S/L

In _ [7
0 l.O

FI _n_r e 2.

2(a) 2(b)

Histograms of pattern parameters for the large and small

spacings of loop (2a) and main (2b) arrays; and ratios,

small-to-large spacing, of FCA paramters.



399

array. The latter finding is puzzling.

QUANTITATIVE TEST

A test is required which doesn't use V o, Ao, or C o . The first obvious

choise is to use the large (L) and small (S) pattern scales to solve for

and A o. This is done by taking the difference of equation (9) for large

and small spacings:

1 1 1 1

_ - _ = 2A( -_---_ ) (II)
AS D L D S

Since D S and D L are known, and A S and A L come from the FCA, the noise para-

meter & can be found. Again note that this noise parameter is only good

for the present large versus small spacing test - it is not the real noise

because noise effects on t a have not been considered (and these will depend

on the type of numerical analysis done to find ta). Then A ° can be found

from (9), again with the above caveat, a_d then Vs/V L from equation (8)_

V S i+ 2aA_ /D_

= (12)

( In some cases, possibly due to statistical scatter or the fact that A_

is not an accurate estimate of the I-D pattern scale, A S is greater than AL

- i.e. noise factor >i. This is theoretically impossible, however these

data are retained for the plot.)

This predicted value of speed ratio is compared with the measured

ratio in Figure 3. The loop data agree well with the theory, but the main

array data are skewed - the predicted speed ratio is somewhat less than the

measured. A possible reason for this is that the centre antenna in the main

array - which is not used for the large spacing, is a single dipole and

thus more susceptible to noise. This means in terms of the predicted ratio

that the pattern scale A S will be smaller than expected from spacing con-

siderations alone, and look as though it were measured with an even smaller

D S. Thus the predicted ratio, found from (12) will be smaller than expected

- and this is shown by the scatter plot.

CONCLUSIONS

elm ec_ seenThe triangle size _= + at Saskatoo_ can be explained as a
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Figure 3. Scatter ])lots of predicted (based on antenna spacing and measured

pattern scale) FCA velocity ratio, small/large spacing, for loop

(3a) and main (3b) arrays against measured velocity ratio. The

medians are shown by diagonal dashed lines.

result of random noise in the data. In theory it is simple to correct the

data for noise - simply divide all the correlations by the noise factor,

NF, before analysis, or re-work the FCA parameters backwards and forwards

putting in the noise correction if it is known; but in practice an accur-

ate value of NF is sgzetimes difficult to determine (particularly in cases

where the auto-correlation is narrow); and when the peak cross correlations

are high to begin with, correction often leads to spurious or impossible

FCA results.

REFERENCES

Briggs, B.H. (1968) "On the analysis of moving patterns in geophysics

I: CorreLation analysis" J.Atmos. Terr. Phys,30, 1777-1788

Chandra, H. (1978) "On triangle size effect in spaced receiver drift

experiments" Indian Journal of Radio and Space Physics, [, Feb

1978, 13-15

Colley, M.G. and D.E. Rossiter (1970) "Some tests of methods of analysis

of ionospheric drift records using an array of 89 aerials"

J.Atmos._err.Phys, 32, 1215-1233

Meek, C.E. (198C) "An efficient method of analysing ionospheric drift

data" J.Atmos.Terr.Phys, 42, 835-8[)9



401

GRAVITYWAVEOSCILLATIONSASA CAUSEOF
SPECTRAL BROADENING

W.K. Hocking

Department of Physics and Mathematical Physics,

University of Adelaide, Adelaide, SA 5001 Australia

Signal fading of echoes received in radar studies of the clear atmosphere

occurs due to variety of reasons. For VHF, HF and MF studies the main cause is

generally the horizontal mean motion of the scatterers through the beam, which

broadens the spectrum of the signal and so causes fading (beam-broadening).

Other lesser contributions occur due to due to wind-shears, and also due to the

fluctuating velocities of the scatterers. By calculating and separating out

the beam- and wind-shear-broadened contributions it is possible to make an

estimate of the Root-mean-square fluctuating velocity VRM s of the scatterers,

and this is often ascribed to turbulence. However, there are other effects

which contribute to VRMS, and in any determination of turbulence intensities it

is necessary to consider and remove these effects. One important cause of this

broadening is gravity wave oscillations. Although a gravity wave may only go

through a fraction of a cycle during the data collection period, this will

still contribute to VRM s if the wave amplitude is more than a few ms -/

Such oscillations will produce not only a broadening which increases as a

function of data length, but can also lead to non-Gaussian spectra. These two

features may be used to help determine the relative contributions of gravity

wave oscillations and turbulence in experimental spectra. Below, the types of

deformation of the spectra which occur due to gravity waves are illustrated,

and the variation of the spectral width as a function of data length is derived

analytically.

If a wave of period T is sampled for a length of time _, then the velocity

variance which results is dependent on r, If • is less than T, then the

variance is less than the variance which would result if a full period of the

wave had been used. If a radar observes a gravity wave for such a period _,

then the spectrum recorded will be broadened by an amount depending on the

measured variance of the radial velocity. Of course the value of the variance

will depend in part on which phase of the wave is sampled. However, for

statistical purposes it is more important to know the average variance averaged

over all phases.

Consider the radial velocity fluctuation being observed hy the radar to be

of the form v - v 0 sin (_t +_), where w - 2_/T and suppose that the radar

observes for a time interval _. The parameter v 0 is the peak radial velocity

observable with the radar. Then the variance of velocities observed by the

radar is

°2 " 7 P(v) .v2dv - [ f P(v) .v dvl 2 (i)
vf

where P(v)dv is the frequency of occurrence (normalized to I) of velocities in

the range v to v + dr, and the integral is over all v which occur in the time

interval between 0 and _.

The form of the probability distribution function P(v) of the velocity

fluctuations is given by
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P(v) - n/r dt/dv
n i

_v 0 cos(_t + ¢)

where v may only take on the values covered during the time interval r.

Here, n is the number of occasions when the wave has a radial velocity of v in

the time interval b,tween 0 and r. For example, if r - T, then n-2, as there

are 2 occasions when a velocity v occurs in each wave cycle. In this case,

P(v) .. _1 . ]. ,
x voJ(l - vZ/voZ) '

An example is sho_ in Fig. I. Note the bimodal nature of the distribution,

which arises because the wave spends a relatively large fraction of the time

around the maximum and minimum velocities, and passes through the point where v

- 0 rather quickly. Experimental spectra of this type should be rejected if the

spectra are being used to determine turbulent energy dissipation rates, since

they are likely to be due to high frequency gravity waves. It should also be

noted that if both turbulence and such wave activity co-exist, the turbulent

spectrum will be convolved with that due to the gravity wave, and this will

therefore partly or even completely mask the bimodal character.

The variance of the velocity fluctuations is most easily calculated as

a2 - f v2dz/r - [ I v dt/¢] z <2)
V_

t-O t-O

or

_z - l/r . f
V_

t-O

v2 o . sin 2 (_t + @). dt

T

- [I/f . f _0 sin (wt + 4) dt] z (3)

t-0

Note that we do not have to concern ourselves with the factor n seen in our

expression for P(v), since we now do the integral over time and so each

interval dt is unique. Thus we need not be concerned that the same velocity

occurs several times, since by integrating over t we cover all velocities. The

above expression may readily be integrated to give an expression for aZvr in

terms of vZ0, T, w, and 4.

A more important parameter than o2vr is the mean variance <O2vr> averaged

over all phases 4. _len

2_

<°2 >- I =2 d_
v_ vT ' 2_

4-0

Evaluating (3) ard substituting into (4) shows that

(4)

<a 2 > - F. v2o/2 (5)
Vf

where vZ0/2 is of course the variance of the wawe had it been sampled for an

integral number of periods, and
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i T a .2_r. (6)
F - i - _ . (7) • (I - cos (T)}

Naturally F - I when T is an integral number of wave periods, and F tends

to 0 as r tends to O. The functional form of F is plotted in Figure 2.

As an example, if the wave period is 5 min, and a sampling length of 100s

is used, then F = 0.33, while if 7 - 200s then F - 0.845. The ratio of these

two is 0.38. By recording spectra using two different data lengths (e.g. 100s

and 200s) and measuring the ratio of spectral widths recorded using each

different data length (after removal of beam and shear broadening), it is

possible to use such theoretical calculations of F to estimate the relative

turbulence and gravity wave contributions to the measured spectral widths.

Examples of the application of this theory in removing gravity wave

contamination have been illustrated by HOCKING, 1988; more sophisticated

applications can and should be developed.

Acknowledgements. Discussions with Damian Murphy are gratefully acknowledged.
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MF RADAR INTERFEROMETER MEASUREMENTS OF METEOR TRAIL MOTIONS

C.E. Meek and A.H. Manson

l_stitute of Space and Atmospheric Studies

University of Saskatchewan, Saskatoon, Canada

Abstract: Angle of arrival and Doppler velocity of meteor trails are meas-

ured with a mediun frequency radar (2.219 _z) and compared with spaced

antenna, correlation analysis, winds.

INTRODUCTION

Recent statistical work on MF meteor trail echoes has been done by

OLLSON-STEEL and ELFORD (1987). Their interest was in meteors, ours is

wind measurements. Previous comparisons of interferometez and ground dif-

fraction pattern motions on ionospheric echoes have been done by MEEK and

MANSON (1987a,b). ?he general result was that the full correlation type

analysis (FCA, e.g. BRIGGS, 1968) gave a smaller velocity estimate than

the interferometer. The main drawback with the interferometer is that it is

uncertain whether -;he selected "scatterers" were isolated physical scatter-

ing centres carried along by the background wind, or perhaps just moving

glints on a reflecting layer. By definition, a meteor trail is a physical

entity, and should produce a good wind estimate. The best time to observe

meteor trails is at night, when the "ionospheric clutter" is small- of

course this is the worst time to do FCA meast_ements, but over long periods,

and assuming that tidal motions predominate, a reasonable comparison should

be possible between "mean daily variations" from the two systems.

During operation of the meteor trail system, an improved real time

wind (COH/_TW) systen was installed which employs coherent integration

and complex correlation in the FCA. With the resulting increased S/N,

direct comparisons with single trails are feasible.

METEOR TRAIL EQUIP_T

The MF transmitting system is the same for both experiments: 50 KW

power, 20 _sec pulse width( 3 Km resolution), 60Hz PRF, a vertically
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pointing4x4array of foldedhalf-wavedipoleswith half-powerat _22°
zenith, operatingat 2.219MHz.

In the spacedreceiverFCA,echoesare normallyassumedto comefrom
nearthe zenith - andthe chosenspacingof the antennasis basedonex-
pectedmotionsof the groundpattern. Meteortrails, onthe otherhand,can
beseenat almostanyzenith angle- especiallyat night whenthe iono-
sphereis weakanddespite the relatively narrowtransmitterantennabeam.
Angleof arrival (AOA)measurementsrequire closely spacedantennasto
avoidphaseambiguities.This spacingin the normalfoldeddipole receiver
arrayswouldexhibit unacceptablecoupling.Thusa loop (shielded,1.5 m
diam.)array wasused(Figurei): the outer loopsare½wavelength(67m)
fromthe centreloop, andforman
equilateral triangle - soA0Acan
bemeasureddownto the horizon
withoutambiguity.Theadvantageof
the "Y"arrangementis that 3 in-
dependentphasedifferencesare
available for a plane-phase-front
(i.e. single scatterer) test. The
measuredloop-pair isolation is better
than90dB.Howeverthe loopsexhibit
a measuredsacrifice of 40dBin gain
and25dBin signal-to-noise(S/N).

Figure I. Loop array

The night-time ionospheric MF noise level is also at least 20 dB higher,

so the loss of S/N in the equipment is not as serious as it first appears.

A 40 dB pre-amp is located at each loop. Calibrations must be done fre-

quently to monitor possible unequal temperature induced shifts in phase

between pre-amps.

OPERATION

A single coherent receiver is cycled around the four loops, pausing at

each for coherent integration: 8, 4, and 6 pulse integration were used at

various times. 16 heights (ranges) are monitored ( 85-130 Km). The average

amplitudes are stored continually according to a rotating memory pointer

( 128 point sequences). The Apple II which runs the system picks out meteor

trails strictly on dead time/rise time at each range gate - that is
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theremustbea period (_ 8 sec)with the sL_nalbelowa thresholdTI
followedby a jumpto a level aboveT2 (_ 8 dB)within oneantennacycle
time (_0.4 sec), _mdit muststay aboveT1for morethan-_4sec.( The
exacttimesvarya little dependingonthe amountof integration used.)
Thetrails are monitoreduntil theyfill the availablestorage,or end,at
whichtimethe (inlegrated)amplitudesequena'esaredumpedto tape. Re-
ceiver gain is constantfor eachtransmittedpulse, andcontrolled in the
long termsothat _ost rangegateshavesignalsbelowTI. This trail
selectionmethodis very similar to that of 011son-Stee!andElford. Two
sampletrails are shownin Figure2.

t
(sec)

N

10

109Ks 112Km 115Ea

Reco_ enasat87,_6/0_6,_9 UT
mean signal -_

(se_)

llSKm i21Km 12gKm t27Km 130Km

Figure 2. Two sample trails (8 pulse coherent integration); a selected

subset of range gates is plotted. Only those heights showing

the zequired dead/rise time are analysed further.

PHASE CALIBRATION

Phase calibration is the critical part of the experiment. Initial

attempts to find trails on all-sky film failed, so the method presently in

use is to run the system on ionospheric echoes in the daytime, in the long

term, most echoes shPuld come from the zenith. Histograms were plotted for

phase differences fo/nd from pairs of antenna cycles weighted in such a way
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as to eliminateDopplershifts (Thesewouldnot bea problemif therewere
onereceiverperantenna.).Unfortunatelythe histograms(not shown)are
not sharplypeaked,andthere is somevariation in calibration ondifferent
days.5-10° in peaklocation (_3° in zenith) is the best accuracythat can
be expectedfromthis method.Othermethodsincludedfeedingthe centre
loop andmeasuringthe phaseat the outer loops; holdinga transmitting
test loopneareachantennaloop; andcomparingthe AOAfromshowermeteors
(Quadrantlds)with the predictedlocusof llnes-of-sight perpendicularto
the knownradiant. Thefirst twoshowedlarge phasedifferencesfromthe
ionosphericmethod,possiblydueto groundreflections, while the last,
althoughgoodagreementwasobtainedusingthe ionosphericcalibration, was
too insensitive to "fine tune" the phasecorrections.

Anothermethodbeingtried is airplanetracking, althoughtheir line-
of-sight velocities areusuallynearthe systemlimit (integratedamplitude
rate) for Dopplerphasewrap-around,andtheycan disappearin ground
clutter.

ANALYSIS
Thetrails are dividedinto_6 secsegments.Twotypesof analysis

weretried. In method"A" a parabolicfunction is fitted to the meancom-
plex auto-correlationphaseoverthe first twolags to get anaccurate
phaseslopeat zerolag for calculatingDopplervelocity. If the phase
slopechangesby morethan20%betweenthe first andsecondlags, thedata
are rejected (Phasecurvatureis causedby multiple scattererswith differ-
ent Dopplers.).If the phaseat the first lag is greaterthan90°, the
secondlag phaseis "unwrapped"to a valuebeyond3180° with the samesign
as the first lag, andthen the abovecriterion is applied.

The"zero lag" crosscorrelation phasesare thenfoundandcorrected
fromthe calibration data. Sincethereare cyclingdelaysbetweenantennas,
a Dopplercorrectionmustalso bemade.Thenthe normalizedphasediscrep-
ancy(NPD)is calculated.This is the sumof the threephasedifferences
dividedby the sumof their absolutevaluestakenasa positive number.A
low valueindicatesa planephasefront - i.e. only oneAOApresentin the
signal. If NPD_0.3, the dataare rejected (_70%significancecriterion).
Otherwisea fit of anAOAto the data is donewhichminimizesthe squared
error in phasedifferences(Asanaside:althoughthe arraycanmeasureAOA
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downto the horizon,there canbecanbecasesin whichtheAOAcarmotbe
calculatedfrom3 [phasedifferences- evenif NPD=0.Anextremecase,for
example,is 0°, -I_0O,+180O, in whichthe scatterer mustbesimultaneously
on the horizonin i,woantennapair directions. Thereweretwosuchcases in

the long term data. These could have been caused by calibration error, or

by statistical fluctuations in the phase differences.).

The long term data presented later had the following processing stat-

istics: 630 trails (average of 19 per night) giving 1356 original trail

se_ents, of which there were 291 rejected or phase curvature, 207 on zen-

ith < 10°(see below), and 250 on NPD > 0.3, leaving 628 for wind analysis.

Method "B" is the same as "A" except that only the first lag auto

phase is used to de:_ine Doppler and correct the cross phases. There is no

rejection on curvature, but data are rejected if the first lag auto phase

is greater than 90 ° , The latter criterion effectively eliminates high

Doppler speeds but the main reason is to avoid possibly large errors in

AOA during Doppler correction of the cross phases.

Usually the results from different segments of the same trail a_ree

very well.

At least 2 trails at different azimuths are needed to calculate a

horizontal velocity vector (the vertical velocity is assumed to be zero

over the long term - but it can be found if desired). Because of doubts

about the phase caliDration, zenith angles less than I0 ° are rejected. For

the purpose of the p_esent comparison the trail data are separated into

GMT hour bins and 9 ]_ height bins (the height is found from the AOA and

range and includes the curvature of the earth). Then a fit of a horizontal

velocity vector, whi<_h minimizes the squared error in Doppler velocity, is

done.

It is assumed i_plicitly that there is no ionosphere at night, i.e.

the ray paths are stlaight.

VELOCITY/ COMPARISON

Figure ] compare3 the meteor and RTW (real time wind system, G?SCORY

et al.,1979; MEEK,198)) velocities. The meteor values are a single fit to

the selected trail da_a over the month Dee 7'87 to Jan !i'88. The minimum/

maximum number of accepted trail segments in an hour was 9/38 (some cf

which may be from the same trail). The RTW values are found by avera__ng
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all the valuesin eachGMT
hour- typically 150-250
valuesperGMThourin the
monthfor the height layer
100-109Kin.RTWdaytimevalues
at T+12harealso plotted to
identify anynoisebias (lower
velocities) at night. A noise
bias is not evident- the dif-
ferenceexhibitedis probably
dueto the 24hr tide.

Themeteor"A" analysis
seemsto producea better be-
hayedvalue than the "B" (the

number of trail segments used in

each are similar), but shows an

unusually strong background com-

ponent of approximately 20 m/s

southward and westward, where-

as the "B" value is closer to

zero. The "B" analysis agrees

quite well with the RTW in tidal

amplitude (taking maximum to
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Figure 3. Long term comparison of

meteor and spaced ant-

minimum wind spread) but is noisy, enna (FCA) winds. Local
' midnight is near 07 GMT

The mean background wind of _10

m/s is reasonable (GROVES,1972; MANSON et al.,1987). It is possible that

the "B" magnitude is smaller than "A" because of the rejection of high

Doppler velocities (phase wrap-around) in "B", but in theory, if the

meteor trail data were accurate, there should be no difference.

The 20 m/s offset in meteor background wind would be hard to explain

by phase calibration errors if the trails were uniformly distributed in

azimuth - that is low Doppler shifts on one side of the zenith (due to

errors in identifying the zenith) would "cancel" the effect of high shifts

in the other side - but the trails are not uniformly distributed.

Figure 4. shows the distribution (all heights combined) of AOA's for

the first accepted segment in each trail. Thus it appears that phase cal-
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ibration errors cou/dhavea strongeffect onthe calculatedwinds

N N

S S

GHT:03-04 95-06 07-08 09-I0 ]1-12 13-14 15(x2;

Figure 4. Distribution of trails in azimuth for Dec 7'87 to

J_n 11'87 by analysis "A". Trails at all heights are

included. The outer circle represents 30 different

trails. The number at 15 GMT (i hour) has been doubled

before plotting. Zenith angles < 10 ° are not included.

DIRECT COMPARISON OF METHODS

The coherent re_ time wind system (COHRTW) was put into operation

in June 1988. As with the RTW system, this does 5 min analyses for winds,

but has one receiver per antenna and does 32 point integration at night

( 60 Hz transmitter ]_F). At this rate there is a possibility of seeing

multiple hop echoes, but since the separate p_[ses are not phase locked,

these signals should cancel to a large extent. The increase in data is

considerable (see separate paper in these proceedings) which allows some

direct comparisons. However examination of da2_ime data shows that COHRTW

velocities are some 20-30% smaller than ETW values on the average (for as

yet unknown reasons).

Figure 5 shows cne direct meteor-COHRTW comparison. These data are for

2 hr on May 29'88 for a layer 100-106 Km. The location of trails are plotted

as the origin of a vector representing the cs_Ic__lated horizontal velocity

component (assuming zero vertical velocity). Also plotted are the results

of a 2-D (no vertical velocity) and a 5-D fit to these 8 trail segments (2

of which are from the same trail). The large difference in speeds is due

to the fact that all trails are on one side of the zenith. The end points

of the 5-min COHRTW vectors are shown by X (1025-1120 GMT) and 0 (1125-

1215 GMT). There is f_ir agreement between the two: a 30 ° difference in

direction, which couli be due to the "bunching" of the trails on one side

of the zenith, and 30_ in speed, possibly due to the mentioned speed bias

in COHRTW data.
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4
50mi$

Fi_e 5" Direct comparison between spaced antenna wind analysis

(FCA-COHRTW) and meteor trails over a 2 hr period on

Hay 29' 88.

C ONCLUS IONS

The long term meteor data shows a tidal oscillation, which means that

the system is measuring winds. A major drawback is that there are few

trails, and those which are measured are not uniformly distributed in az-

imuth. Nothing can be done about the latter problem- the ecliptic is not

going to move, but 6 dB more sensitivity could be attained with a separate

receiver for each loop. An increase in transmitter PRF is not practical at

this time. Other improvements would include better gain control (a separ-

ate gain for each range gate) and well engineered loops and pre-amps to

reduce the system noise level.
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A COMPARISON OF WIND PROFILERS OPERATING AT 915, 405 AND 50 MHZ

W. Ecklund, K. Moran, P. Currier, B. Weber, D. Carter, and D. Wuertz

, Aeronomy Laboratory

Wave Propagation Laboratory

National Oceanic and Atmospheric Administration

Boulder, Colorado 80303

In November, 1987 two new small portable radars operating at 405 and 915

MHz were located near the existing 50 MHz radar at NOAA's Platteville field

site. The purpose of the experiment was to compare radial velocities and

refleetivities measured by the different radars as a function of height and

time. The comparisons were made on beams pointing toward the East at 15 de-

grees from the zenith with l-minute averaging and matched range resolutions.

The one-way half-power beamwidths of the antennas ranged from 6 to 7.5 degrees.

Profiles of radial velocities measured under clear-sky conditions with 150

meter resolution at 915 and 405 MHz and averaged for a 1-hour period are

plotted in Fig. I. The r.m.s, differences in radial velocities for these data

sets are .26 m/s for l-minute averages, and .17 m/s for 5-minute averages.

Fig. 2 shows profiles of radial velocity and S/N observed by the 405 and 915

MHz radars. The S/N at 405 MHz is about 15 dB higher than the S/N at 915 MHz

as expected for the relative power-aperture products of the two radars.

Fig. 3 shows profiles of radial velocity and S/N observed in rain. The

S/N for the two radars should be about equal under these conditions (particle

scattering), but note that the actual difference varies considerably with

height. Finally, Fig. 4 shows 1-minute profiles of radial velocity and S/N

observed by the 50 and 915 MHz radars. The enhanced S/N above 3 km at 915 MHz

is probably due to small cloud particles with low fall speeds since the radial

velocities observed by the two radars in this height range are in reasonable

agreement. In summary, a preliminary comparison of radial velocities observed

by 405, 915 and 50 MHz wind profilers shows good agreement over the heights
covered.



414

OF PO'Dit _'UALITY

o_

!

i !

,I

i

. ii

;rTi ', ., ,
1 I I

0 v

T

Ir o -_

o?

._ _-7- I

(wH))gNV_ 1VIOV_

Q)
O_

I

o

¢q

L_

I I i
N N

LO _o

o o o. o.
_" CO 0,1 ,--_

0

o,_

(TDV-INH) },tl_l_H

o

o

o

0

I

4-1

0 0 •

,..-I

4



415

CD

_3

0

_q

_ch
I

4

0

I

C_



416

SAD AND tNTERFEROMETRY ANALYSIS WITI[ TIlE MU RA1)AI/

SIMULATIONS AND PRELIMINAI_Y I(ESULTS

J.S. Van Baelen 1,2 ,A.D. Richmond l , S.I,2. Aver.v ':_ .

T. Tsuda 4 , S. Kato 4 , and S. Fukao 'l

i. IIAO/NCAIt, P.O. Box 3000, Boulder, CO 80307. USA.

2. l)epl, of Electr. & Computer Eng., Univ. of Colorado, Boulder, CO 80309, USA.

:1. CIRES, Campus Box 439, Univ. of Colorado, Bouhler, CO 80309, USA.

,I. IIASC, I,:yoto University, Uji, 1,2yoto 611, JAPAN.

1/ 1NTIIOI)UCTION

Since \Voodman's discovery and interpretalion of mesospheric echoes (\VOODMAN and

GUILI, t"_N, 1974), there ha_ been astrong interest in the middle atmosphe,'e dynamics as revealed

by ground based radars. Atmospheric radar techniques such as Doppler MST radars and spaced

antenna radars have undelgone extensive development and are now joined by new applications

such as inlerferometry to study' the atmosphere hom the troposphere to the mesosphere and

beyond. State-of-the-art radars of both kinds have shown generally good agreement between

their measurements and those obtained by other means including baloons and rockets. Ilowever,

it is also important to perforln direct comparisons of the different atmospheric radar analysis

techniques in order to better understand the nature of their differences.

In that prospect, the MU radar appears to be a well suited tool considering its

outstanding flexibility of u;e. Therefore, we designed an experiment to compare the horizontal

winds, and possibly other characteristics of the atmosphere dynamics, obtained by different

attalysis techniques. This leport presents a brief description of the experimental setup , of the

analysis procedures implemented, and of a simulation program. A test run on the MU radar

provided some preliminary results on actual atmospheric data.

2/ F,XI' Eli IM [",NTAL SI"'FUP

The MU radar is a monostatic radar operating at VIlF (,16.5 Mllz). Its antentla is a

circular array of 475 crossed three-subelement yagi which can be divided inlo 25 groups of 19

elements each. Nineteen of those groups are identical hexagonal subarrays. For further details,

see (F1, ' I,_AO _t _d., tgS$a,t)). There are four receiving chanuels available which can he connected

to any coml_ination of grottps of elemeuts.

The primary goal of the experiment we developed is to compare horizontal wind velocities

obtained by the Doppler method to those obtained by spaced antenna drift (SAD) analysis and

interferometry. Therefore, .re alternate pe,'iods of 5 beam Doppler beam swinging (DBS) (one

of lhe MU radar regular ln3des of operation), with the entire radar array used as transmitter

and receiver, and periods of data (i.e. time series of complex signal) taken wilh o,ly ,1 hexagonal

groups as individual receive's while the whole array is used for transmission. The later receiving

setup is shown in ligure la. This combination ofl'eceivers alk>ws us Io perform both the SAD

and ll:, interlk'rometry analysis on the same set of data. Tv.o possible Baselines can he used: the

outside triangle (receivers 1-2-3, figure lb) or the inside "star" pattern (receiver pairs l-4, 2-4,

3-.l, guze lb). These corre:.pond to receiver spacings of 68 meters and :19 meters, respectively.
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Figure 1. a. Top view of the MU radar array. The shaded areas correspond to the four
hexagonal groups used as individual receivers, b. Schematic of the receiving setup. Long
dash: outside triangle, short dash: star pattern.
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3/ ANALYSIS TECIINIQUES

A program was written to implement both the SAI) and tile interferometry analyses.

Fully developed software already exists at the Radio Atmospheric Science Center (RASC, I(yoto

University) to analyse tile data taken under the DBS mode of operation.

The SAD analysis method implemented so far follows the one described in MEEK (1978)

and MEEK (1980) with the addition that the auto and cross correlations can be computed fl'om

the full complex signal rather than the amplitude alone. Some d;tta rejection criteria have

also been relaxed, but o)mpensated by extensive information along with the results in order to

allow post-processing consideration of their efficiency and eventual rejection of the results. It

has been suggested (VINCENT, private communication, 1988) that using the full correlation

analysis (FCA) (IIII.IGGS, 198,i) as well as removing time series DC offsets ill the real and

quadrature components of the signal, suppressing the zero-lag peaks ill the autocorrelation by

a Gaussian fit, and norrlalizing the cross-correlations excordingly, might prove valuable. This

will be addressed in the near future.

The interferomet'y technique implemented corresponds to the work done at Jicamarca

by FARLEY et al. (1981) and KUDEKI (1988), using an equilateral triangle in our case.

For both techniques, many of the analysis parameters are user-defined: number of points

in the time series, numher of averages, maximum lag for the correlations (SAD), number of

points for the FFT (interferometry), etc.

4/ SIMULATED SCATTERING BACKGROUNDS

In order to verify _he analysis routines and to help define the optimunl radar configuration

to be used during the aelual experiment, it was decided to provide different ways to generate a

simulated scattering background. The atmospheric volume created corresponds to a radar cell

defined by its altitude, width (half-power beam-width at that altitude) and thickness (range

gating). The horizontal mean wind is also specified by the user through its meridional and zonal

conlponents.

To approximate a turbulent scattering mechanism, tile volume is filled with randomly

distributed point scattelers (this is a 3-dimensional equivalent to the screen of scatterers

desc,'ibed in WRIGIIT and PITTEWAY, 1978). An echoing amplitude is randomly given to

all scatterers and their c_mplex signal with respect to _ach individual receiver is sumn-ted to

provide the resulting signal amplitude and phase (real and quadrature compone,_ts). This

process defines the first mint of the time series uecessz_ry for the analysis procedure to take

place. The successive points are determined by displacing the scatterers ill the radar volume as

advected by' the mean wiM. When a scatterer moves out of the volume a new one is injected

on the opposite side of the radar cell. The user can request that the amplitude of each scatterer

remain constant or vary 'audomly while it drifts through the radar volu,ne. A 3-dimensional

random displacement (tulbulence) can also be specified.

A varialion on the point scatterer background allows the addition of a high density patch

(ellipse) of scatterers to d:ift across the radar volume.

To account for spe:ular reflection, a reflecting bacxground is defined as a tilted l)lane on

which a long-wavelength and a short-wavelength structure are supe,'imposed. The whole pattern

is advected by the mean wind but, in addition, an imlependent phase velocity can be specified

for the long-wavelength structure. The aml)litude of the echo a.t every reflecting point of the

co,'rugated surface is afm ctiou of the curvature at that point.

To exemplify' the interest of these simulations in preparation for the experiment, ligure

2 shows the effect of spaci _g between the receivers for the SAD analysis. In a perfecl case, the
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Figure 2. Measured velocities vs specified velocities. Ideal case: plain line at 45 degrees.

Long (68 meters) baseline: long dash. Short (39 meters) baseline: short dash. Letters A and T

denote the "apparent" and the "true" wind measured, respectively.
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measured wind velocities are equal to those specified by the user. Simulations show that the

"apparent" velocity results are higher than the input w!file the "true" velocity results are under-

estilnates of the specified wind. Also, "true" wind measurements appears to saturate (yield an

al,nost constant output value) when the input wind velocity gets higher than some critical value.

Moreover, it can be seer that for smaller spacing of the receivers the "true" wind measurements

saturate at lower wind velocities. A similar reduction of the maximum wind velocity obtainable

before saturation is observed, is produced when random variations of the echo prover of the

scatterers are iltcluded in the atmospheric motion.

The complex auto and cross correlations are also a benefit for the analysis. Cross

correlograms present enhanced peaks (as shown in figure 3) which can yield a better rate of

valid results. Indeed, a low value of the cross correlation peak is one of the usual rejection

criteria.

The significance of many other parameters of the experiment and analysis procedures

could also be checked through simulations by varying the number of points in the analysis, the

time step between successive points of the time series, etc.

The simulations can also prove valuable to asses the feasibility of new experiments and

serve as a didactic tool for envisioning the effect of diffeL'ent parameters on the analysis.

5/ PI{ELI,MINARY RESULTS

A test observatiol was performed on the MU radar in October 1988. A preliminary

analysis of one 4 minute segment of data, both with the SAD and the interferometry techniques,

is presented here. The S?,D analysis used the outside tri;ulgle while theinterferometric method

made use of the star pattern. The range gate spacing is 300 meters.

Tke results of the SAD analysis are presented in figure 4. It shows the meridional and

zonal components of the "true" wind. For each 300 meter range gate (from 12 kilometers to

21.3 kilometers of altitude), a star represent the value given by the analysis routine. No star

means tl,_t the data was rejected during the analysis procedure. The solid curves correspond

to a. fitted 10 minute ave.'age DBS profile obtained with the MU radar 40 minutes later than

tile SAD profile shown. It can be said that a reasonably good agreement appears, even though

some SAD points, especially in the North/South component, exhibit a clear departure fl'om the

averaged DBS era're.

Figure 5 shows tim interferometry results obtained for two successive range-gates

(altitudes of 15 and 15.3 kilometers, respectively). In the first one, a strong echo appears,

corresponding to values o;" normalized cross spectra close to one as well as a well structured

phase diagram. I,[UDEK1 (1988) has discussed how the slope of the phase with respect to

frequency is related to the horizontal wind velocily. In contrast, the next range gale does not

show echoes (only random noise) and the cross spectra amplitudes and phases are ratMomly

distributed. This could indicate that asharp reflective layer was detected in asingle 300 meter

range gate and that ils d','l amics can be derived.
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SPACED ANTENNtk OBSERVATION BY THE CI-1]JNG-LI VHF RADAR: PRELIMINARY
RESULTS*

Chien-Ching Chiu and Yea:n-Woo Kiang

Depa_ment of Electrical Engineering, National Talwan University
Taipei, Taiwan, I_'OC

Abstract

The spaced ant(;nna drift (SAD) technique is a simple means to remotely sense atmospheric
wind velocities by using radars. In this study the so-called "full correlation analysis (FCA)"

method is applied to processing the echo signals received by three spaced antennas of the Chung-Li
VHF radar. Detailed analysis provides useful physical quantities, such as horizontal wind

velocity, random velocity of the irregularities, pattern size and axial ratio of the characteristic
correlation ellipse, etc. Although only the preliminary data of the radar are analyzed, the numerical
results we computed are in good agreement with the radiosonde measurements by the Central
Weather Bureau, ROC.

1. Introduction

Scientific attention has recently been paid to the middle atmosphere which plays a

significant role in the coupling between the solar-dominated ionosphere and the meteorologically
important lower atmosphere. A variety of techniques have been proposed to probe the middle
atmosphere to investigate the structure and the dynamics of this region. Among them, the MST

(mesosphere-stratosphere-troposphere) radar is the most powerful one which usually operates in
the range of VHF (vet/high frequency, 30-300 MHz) or UHF (ultrahigh frequency, 300-3000
MHz) (GAGE and BALSLEY, 1980; BALSLEY, 1981; ROSTER et a1.,1986). The pioneering

work of WOODMAN _nd GUILLEN (1974) caused people to focus attention on using the VHF

radar to probe the middle atmosphere via echoing from turbulence, layer structure or free electrons.
With the advent of the MST radar technique, the atmosphere ranging from 1 km to 100 km can be
observed and investigated.

One of the major advantages of the MST radar is its capability of continuously monitoring

the variations of the atnaosphere with large spatial coverage and with high temporal and spatial
resolution. The radar echoes are caused by small variations of refractive index which are due to
fluctuations in temperatt:re, humidity, and pressure. By properly analyzing the echo signals, details

about the structure and the dynamics, such as winds, waves, turbulence, atmospheric stability,
etc., in the atmosphere c.m be determined (BALSLEY, lC_81; ROSTER et al., 1986).

The most direct and important measurement that the radar provides is the wind field as a

function of height and ti-ne. In general, there are two methods for measuring wind velocity. One
is Doppler beam swingirLg (DBS) and the other is spaced antenna drift (SAD) (ROTTGER, 1983).
For the DBS, a narrow radar beam is used and it is capable of being directed into different

directions. The Doppler shift in the frequency of the echo gives the radial component of the drift
velocity of the scatterer,';. By steering the radar beam in three directions, the three-dimensional

wind velocity can be ob:ained. For SAD, the transmitting radar beam is directed vertically and
several (usually three) _paced antennas are used to record the echoes. In the presence of a

horizontal wind, the returned signals received by the spaced antennas show relative time

displacements. These time displacements are determined from the cross correlation functions of
the records taken in anter_ na pairs and from the time displacements the horizontal wind velocity can

be computed (HOCKING, 1983; ROYRVIK, 1983a). Although these two techniques are
experimentally different, they are closely related in the fundamental sense (BRIGGS, 1980).

The SAD method was earlier applied to the measurement of electron drift in the ionospheric

E and F regions and later to the measurement of neutral wind in the ionospheric D region. Recently

*Part of the results were presented at the MST Workshop in Kyoto by Prof. J. K. Chao.
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this technique has been implemented for a VHF radar to probe the stratosphere-troposphere region
(R.OTTGER and VINCENT, 1978; VINCENT and ROTI'GER, 1980). Moreover, the works of
ROTFGER (1981) and ROYRVIK (1983b) indicate that the SAD method is also applicable to VHF

returns from the mesosphere.

In this study, the preliminary spaced antenna observations of the Chung-Li VHF radar are

analyzed by using the "full correlation analysis (FCA)" (BRIGGS, 1968, 1984) which is the most

useful and important numerical method of the SAD technique. Through signal processing, some
physical quantities, such as horizontal wind velocity, random velocity of the irregularities, pattern
size and axial ratio of the characteristic correlation ellipse, etc., are investigated in detail. These

results may be useful in understanding the physics of the middle atmosphere. The measurements

from the radar are compared with those obtained from the radiosonde by the Central Weather
Bureau, ROC, and fairly good agreement is found.

The experimental operation is briefly described in Section 2, and the principle of full

correlation analysis illustrated in Section 3. Included in Section 4 are the data analysis and
numerical results. The experimental raw data of the Chung-Li radar are processed and the
numerical results discussed. Finally, some conclusions from investigations are given in Section 5.

2. Experimental Operation

The reported experiments were made with the Chung-Li VHF radar located at Chung-Li,
Taiwan, ROC (25°N, 121°E). As shown in Figure 1, the antenna of the radar system consists of

three independent identical arrays of 8x8=64 Yagis which can be steered in a zenith and four off-
zenith directions with total effective aperture equal to 2500 m 2. Three separate arrays are required

for the SAD mode operation besides DBS mode.

The radar operates at a frequency of 52 MHz. The experimental data reported here were
recorded on January 5, 1987, with a height resolution of 300 m from altitudes 1.5 km to 13.2 km

and with a time resolution of 0.25 s. In other words, the pulse duration of the radar wave is 2 Its
and the pulse repetition frequency 2 kHz. Only one antenna array (antenna 2, transmitted signals

vertically with peak power 40.3 kW and the three receiving antenna arrays were beamed vertically
to receive the scattered echoes. The returned signals were preintegrated (or coherently averaged)
over 500 pulses for each of 40 height ranges and the resultant data were stored on magnetic tapes
for analysis. Radar operating parameters are summarized in Table 1.

Table 1. Radar Operating Parameters

Parameter V_ue

Frequency, MHz 52
Peak power, kW 40.3
Pulse duration, Its 2

Range resolution, m 300

Pulse repetition frequency, kHz 2
Coherent averaging, pulses 500

3. Full Correlation Analysis (FCA)

To obtain the horizontal wind velocity and related physical quantities from the received
echoes of three spaced antennas, the "full correlation analysis (FCA)" (BRIGGS, 1984) is

employed. Sometimes some records and results have to be rejected, either because of inadequacy
of the data themselves (e.g., weak signals), or because the data do not satisfy the assumptions of
the analysis. Therefore the application of the FCA method requires proper rejection criteria which

of course depend on the nature of the data. Based on the criteria suggested by BRIGGS (1984),
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and with some modifications, we implemented appropriate rejection criteria on the computer
program and the numerical results show that they are satisfactory for the purpose.

4. Numerical Results

The recorded data are time series of preintegrated complex signals. Before further
processing, the flash noise, which suddenly rises with the amplitude much larger than the normal
values of signals, and the ground clutter should be eliminated.

Flash noise is eliminated by the following iterative process. First, from the sampled data si
we calculate the mean <s> and the standard deviation _r of either real or imaginary part. Secondly"
ifl s_ - <s_q > 3.5 _, for some j, sj is replaced by the average of sj 1 and si÷ 1. Then, the new
meal <s> and standard deviation _ are calculated again from resultant data. _gain, if I sk - <s> I
3.5 _, for some k, Sk is still replaced by the average of Sk_1 and Sk+1. Such process is repeated
until no more data separate from the mean by 3.5 t_ are left.

Ground clutter is further eliminated by subtracting out the average value from the signals.
Note that the averaging time period should be much larger than the characteristic time scale of the
echo signals. Here an averaging time period of about 30 rain is chosen in our analysis process.
Besides, to compare the power levels of signals from different heights at a time, we renormalize
the signal by multiplying its amplitude by height range z.

The echo signals were recorded from 0901 to 0932 LST on January 5, 1987, with a time
resolution of 0.25 s. The autocorrelation and cross correlation functions are calculated for each
antenna and for each antenna pair. Signals are divided into segments and each segment is of length
128 points (i.e., of time duration 0.25 x 128 = 32 s). Over each segment the auto- and cross
correlation functions are computed and processed to obtain the horizontal wind velocity and related
quantities. Inspecting the autocorrelation function, we can easily determine the signal-to-noise
ratio (SNR) from the spike at zero time lag, under the assumption of white noise. The
autocorrelation function is then reshaped by removing that spike and modifying the value of zero
time lag by its adjacent values through interpolation.

Figure 2 shows the profiles of echo power for time periods (0901 to 0916 LST) and (0916
to 0931 LST), normalized to the power from heights above 10 kin. The SNR is about 10 - 20 dB
from height 5.4. km to height 6.9 km. For higher ranges, the SNR is too low to give good results
for wind velocity analysis. However, few reliable results are obtained at altitudes below 5.4 km
even though the SNR there is in the range of 20 - 30 dB. This may possibly be caused by the
p_tial saturation of the receiver and an incomplete removal of ground clutter (VINCENT and
ROTTGER, 1980). Therefore only the echoes from heights 5.4 km to 6.9 km are analyzed in
detail and are discussed here. Numerical results show that in this region about 80% of the records
result in reasonably good values of drift velocity, random velocity, pattern size, axial ratio, etc.

The height time plot of the magnitude of the horizontal wind velocity is illustrated in Figure
3a. The direction (measured clockwise from the north) from which the wind blows is given in
Figure 3b, with zero degree giving the direction of north. Note that the mean speed is about 40
m/s and the wind direction is about 250 °, a fairly acceptable result. It is found that from height 5.7
km to 6.6 km approximately 90% of data pass our criteria of FCA. Since the variations of CTD
(corrected time delay (ROYRVIK, 1983b)) are computed to be as small as 5% or so, we may
conclude that the estimates of velocities are quite reliable and the variations of the velocity with time
are mostly due to the meteorological effect itself. Plotted in Figure 4 is the profile of the horizontal
wind velocity averaged from 0901 to 0931 LST. The radiosonde measurements by the Central
Weather Bureau at Pan Chiao (30 km away from Chung-Li) recorded at 0830 LST on the same day
are also presented (by dots) for comparison. Evidently, the agreement between the radar and
radiosonde measurements is quite good.

As mentioned in the previous section, the random changes of the irregularities in the
atmosphere can be characterized by the random velocity vc. Thus the ratio of the random to true
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velocity gives a measure of the relative importance of the random changes compared with the
movement in producing time variation at a fixed receiver. The random velocity versus time at

various heights is shown in Figure 5, and the randorn/true velocity ratio is plotted in Figure 6.
Note that the mean random/true velocity ratio is about 1.4, indicating that the random changes of

the pattern are large during the period of investigation.

To characterize the spatial correlation property of the field pattern, the histograms of minor

axes (or pattern sizes) and axial ratios of the characteristic ellipses are plotted in Figures 7 and 8,
respectively. Here data for all heights from 5.4 km to 6.9 km are shown together since there is no

significant variation for characteristic ellipses over this range. The mean of the pattern sizes is
about 40 m, which is compatible with the antenna spacing (-- 40 m) of the radar system. Generally
speaking, when the pattern size and antenna space are close to each other, the FCA method will

give good results. This can also explain why the data below 5.4 km and above 6.9 km do not

prpvide reliable results since the pattern size increases with the increasing height (VINCENT and
ROTTGER, 1980). It is found from Figure 8 that the axial ratios are generally less than 2 with a
most probable value of 1.1. Therefore the anisometric property of the irregularity pattern in our

case is not important. The distribution plot of the direction of the major axis (not shown here) also
indicates that there is no preferential direction for the major axis of the characteristic ellipse.

5. Conclusions

In this study we have successfully obtained some physical quantities of the lower

atmosphere by processing the echoes from the Chung-Li VHF radar using the full correlation
analysis (FCA) technique. Although this is only a preliminary spaced antenna observation by the

Chung-Li radar, the analyzed results are quite satisfactory. It has been found that both the
magnitude and the direction of the horizontal wind velocity obtained from the radar are quite

consistent with the radiosonde measurements by the Central Weather Bureau, ROC. Moreover,
the pattern sizes of the characteristic correlation ellipses are found to be close to the antenna spacing

for those echo data returned from the heights ranging from 5.4 km to 6.9 kin, where good
analyzed results are obtained by the FCA method. Also the anisometric property of the
irregularities is insignificant in this region owing to the small values of axial ratios (around 1.1)
obtained.
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INTRODUCTION

An experimental campaign was conducted in June 1988 at the Flatland VHF

clear-air Doppler Radar site, which is located in very flat terrain far removed

from mountains near Champaign-Urbana, Illinois, to measure height profiles of

the refractivity turb'_lence structure parameter C 2 and related turbulent

parameters. Three di[ferent techniques were usednto measure profiles of C2:

the Flatland radar (GREEN et al., 1988), a stellar scintillometer (OCHS etnal.,

1977), and thermosonde balloon flights (BROWN et al., 1982). Both the radar

and scintillometer measured C 2 remotely by sensing the effect of the fluctua-

tions of refractive index on _he propagation of electromagnetic waves. At radio

wavelengths the humidity and its gradient as well as the temperature gradients

contribute significantly to the refractive index, whereas at optical

wavelengths only the temperature fluctuations are important. In contrast to

the remote sensors, the thermosonde measures the temperature fluctuations

directly by measuring the RMS temperature difference between two very fast

temperature sensors separated by a meter. The balloon instrument also made

measurements of the height profile of the standard thermodynamic parameters

(pressure, temperature, and humidity), plus wind speed and direction. Model

estimates of C 2 were calculated from the thermodynamic and wind measurements
n.

using the numerlcal methods described by WARNOCK AND VANZANDT (1985). In

addition, optical measurements were made of the transverse coherence length

(EATON et al., 1988), and of the isoplanatic angle (EATON et al., 1985). Both

these parameters depen_ on a weighted integrated value of C 2 through the atmos-

phere, n

Comparisons among these measurements taken simultaneously in simple topog-

raphy provide a unique opportunity to compare these different measurement

techniques and to contrast these measurements with previous comparisons made in

rough terrain (e.g., GOOD et al., 1982; GREEN et al., 1984; EATON et al.,

1988). In this paper _e present some preliminary results, which emphasize the

radar measurements.
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EXPERIMENTAL SET UP

Thermosonde System

The thermosonde system consisted of two parts, which were mounted below an

ascending balloon (BROWq_ et al., 1982}. One part was a standard VIZ digital

microsonde, the other was a micro-thermo bridge thermosonde linked to the

microsonde. The thermosonde measured the RMS temperature fluctuations between

two unheated fine wire tungsten probes separated horizontally by one meter.

The noise level of the instrument is about 0.002 ° C, and the data were recorded

every four seconds giving about a 20-meter height resolution. The microsonde

makes excellent height-resolution measurements of the standard thermodynamic

parameters (pressure, temperature, and relative humidity), and wind speed and

direction• The thermodynamic data were recorded every four seconds, which gave

about a 20 m height resolution. The wind speed and direction were determined

by using the Loran-C navigator system, and the data were recorded every ten

seconds, which gave about a 50 m height resolution. A 1200-gram meteorological

balloon was used to lift the instrument package with an ascent rate of about

5 m/s• The package was suspended from 90 to 180 meters below the balloon to

ensure that the turbulent wake from the two meter balloon did not affect the

measurements•

Flatland Radar

The Flatland radar (GREEN et al., 1988) is located about 8 km west of the

Champaign-Urbana Airport _40.05 ° N, 88.38 ° E, 212 m above mean sea level

(MSL)]. This clear-air Doppler radar (also called wind profiler or ST radar)

operates at a frequency of 49.8 MHz (6.02 m wavelength), with peak and average

power of about 10 kw and 150 watts, respectively• The pulse length and the

range resolution are selectable from 150 to 2400 m. All the data reported in

this paper were taken with a pulse length of i•5 km and over-sampled with a

range resolution of 750 m. In this experiment, the antenna beam was tilted

twenty degrees off the vertical toward the east or south directions. With this

tilt angle, echoes due to specular scattering were essentially eliminated, so

that unambiguous C 2 measurements were obtained•
n

Optical Systems

Three optical systems were used in this study: a stellar scintillometer,

an isoplanometer (EATON et al., 1985), and a transverse coherence length system

(EATON et al. 1988)• The isoplanometer measures the isoplanatic angle 8
• . , . . o F

whlch is the maxlmum angular extent of an extended object that can be vlewed

through turbulence, and the transverse coherence system measures the transverse

coherence length r which is related to the spread of a star image due to
o: .

turbulence. The sclntlllometer, deserlbed below, measures a height profile of

G _ whereas both the isoplanometer and transverse coherence systems measure an

optlcal quantlty which is related to the weighted integrated value of C 2
n

through the atmosphere, i•e., 8 ° (radians) and r ° (meters) are

- 0. 528
o

o

ro2 i[i 46k2/C n Z 
o

3/5

where k is the wavenumber of the light and z is the height above ground.
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Stellar Scintillometer Model II

The stellar scintillometer Model II was developed by the Wave Propagation

Laboratory of NO_% (OCHS et al., 1977). To operate the system, a star of

second magnitude or brighter and within 45 ° of the zenith is selected. The

system is sensitive to spatial wavelengths ranging from 5 to 15 cm, and

measures seven different height regions of optical turbulence ranging from 2.2

to 18.5 km above ground level (AGL). The height weighting functions for these

seven heights are broad, and are broadest at the highest altitudes.

Surface Measurements

An instrumented tower was installed near the telescope domes. In addition

to the standard meteorological measurements, the temperature structure

parameters C_ and the solar radiation were measured. The temperature, dew

point temperature, wind speed and direction, and C_ measurements were made at
both one and four meters above the surface, and the pressure and solar radia-

tion were each measured at one height, one and four meters, respectively.

Mode_ Estimates of C _
n

Model calculations of C 2 were made from the microsonde upper air data;

i.e., pressure, te,perature,nhumidity, and wind speed and direction. The basic

model concepts are given by VANZANDT et al. (1981). Since then, the model has

been extended and revised considerably. We used the latest version described

by WARNOCK et al. (1985), and used the numerical techniques described by

WARNOCK AND VANZAND_ (1985), to evaluate the model estimates. To compare the

model estimates witi results from previous comparisons with the Sunset and

Stapleton radars, _]ich are located in and near the mountains, respectively

(WARNOCK et al. 1986; 1988), we used identical values of all the model

parameters and cons_:ants except one: the constant in the equation giving the

distribution of wind shear. This parameter quantifies the shear environment in

the range of scales important in the onset of turbulence flow; therefore, the

evaluation of this parameter allows the shear environment at these scales above

the Flatland radar to be contrasted with its value above rough terrain.

Description of Campaign

This experimental campaign was conducted at the Flatland radar site from 6

to 15 June 1988. The scintillometer and isoplanometer systems shared a single

telescope; the scintillometer operated at night and the isoplanometer operated

during the day and in twilight. Thermosonde balloon launches were usually made

after noontime and before midnight local time. A typical schedule was to

launch a few package_; in the afternoon and a few after dark. The radar

operated during clear and cloudy conditions, whereas the optical systems

operated during clear sky conditions. The optical telescopes were located

about forty meters northeast of the center of the radar antenna, and the

thermosonde launch site was about sixty meters east of the antenna center.

PRELIMINARY RESULTS

Measurements made by both the radar and sclntillometer remote sensors are

average values over both time and space. Five-minute data averages were used

in this paper by both systems, and the height profiles measured by both systems

are relatively smooth In contrast, each thermosonde in situ measurement is an

average over four seconds, which gives about a 20-meter height resolution. The

four-second thermosonde data displays many very thin layers with large peaks in

C 2. Frequently, the measured C 2 values fall to the observing noise level.

T_us, to compare the thermosond_ profile with the others we smoothed the

thermosonde data. We used a Gaussian filter with a _ 0.5 km and truncated the

filter at ±2.5 a.
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FiguresI through3 showheightprofiles of the C=measurementsfromthe
radar, thermosonde,andscintillometer togetherwith t_omodelestimate
profiles. All the radardatausedin this preliminarystudyweretakenwith
the antennapointed20° towardstheeast. Thethermosondeandmodelprofiles
havebeensmoothedwith the sameGaussianfilter. Onemodelprofile givesthe
total C2 including thehumidityterms;this model,called model(radar), is
compare_to the radardata. Theothermodel,called model(dry), omitsthe
humidityterms;it is comparedto the scintillometer andthermosondeprofiles
Notethat the dry andradarmodelprofiles mergetogetherat aboutten kmand
are identical at higheraltitudes.

FigureI showsthe first examplein this dataset that hasdata fromall
three instruments.Recallthat the thermosonde,scintillometer, anddry model
profiles formoneset of profiles, andthat thesethreeprofiles are to be
comparedwith eachother; whereasthe radarandradarmodelarea separateset
of profiles. Theagreementamongthe profile in eachset is very goodto
excellent. Theradardataareon themodel(radar) curveexceptfor the lowest
point at 4.85km;at that height themodel(radar) is smallerthanradar
measurement.Thenextexample,shownin Figure2, is a daytime example, so

there are no scintillometer data. Figure 3 shows the next nighttime example.

In both cases the model (radar) is smaller than the radar data for the lowest

two to three range gates. The data from the other range gates fit the model

(radar) well.
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Figure 2 is not a typical example of the thermosonde measurements made

during the day. For flights later in the afternoon, the thermosonde data were

much larger than the nighttime measurements. This day/night effect is not yet

understood.

All observational methods used in this study make several fundamental

assumptions to derive a C 2 value from the raw data. The most important assump-

tion is that the mixing i_ due to turbulent flows, and, further, that the

turbulent flows are homogeneous and isotropic and that the observing scales are

in the inertial subrange. Since the measurements and model estimates used in

this preliminary study are generally consistent, these simplifying assumptions

and analysis in terms of the C 2 structure parameter are generally useful. The
n

relative importance of convectlve mixing, viscous damping at scales smaller

than the innerscale, and anisotropic turbulent fluctuations will require fur-

ther research.

SUMMARY AND CONCLUSIONS

An experimental campaign was conducted at the Flatland clear-air VHF radar

site located near Champaign-Urbana, Illinois, in June 1988 to measure height

profiles of the refractivity turbulence structure parameter C 2 and related

turbulent parameters. This Flatland site was chosen because _t is located in

very flat terrain far removed from mountains, so that orographic effects are

minimized. Three different techniques were used to measure the height profiles

of C 2. The 50 MHz clear-air Doppler Flatland radar and a stellar scintil-

lome_er measured the profile remotely, and high resolution in situ measurements

of C 2 were obtained from over 20 thermosonde balloon flight. The balloon
n

instruments also measured the standard thermodynamic and wind data with excel-

lent height resolution.

Model estimates were calculated from the standard balloon data and com-

pared with the measurements. Because the radar measurements are sensitive to

humidity and its gradient, whereas the thermosonde and scintillometer are not,

two model profiles were calculated. One model profile included the humidity

terms, called model (radar), and the other, called model (dry), did not.

During the nighttime, all the measurements and model profiles are

generally consistent. There are two exceptions that occur systematically

through the data set. One difference is that the model (radar) values of C 2

near five kilometers are consistently lower than the values measured by the n

radar. Another difference is that the scintillometer measurements at about 14

km are always smaller than the thermosonde and model estimates, and are near

the instrumental noise level.

In all the nighttime cases, identical values of all the model parameters

and constants were used in the model calculations. Furthermore, these values

were identical to those used in previous studies using the Sunset and Stapleton

radars except for one very important parameter. This parameter is the constant

in the distribution function of wind shears. Its value at Sunset and Stapleton

was 50% greater than its value at Flatland. This suggests that the wind shears

at scales of the fine structure are smaller over Flatland than over mountainous

terrain.
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Simultaneous observations of the troposphere and lower stratosphere by
the Flatland and Urbana ST radars: initial results
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J. L. Green
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ABSTRACT

Simultaneous VHF radar observations of the troposphere and lower stratosphere were
carried out on August 17-19, 1988 near Urbana, Illinois using the Flatland radar and the
Urbana ST radar, which are operated by the Aemnomy Laboratory of the National Oceanic
and Atmospheric Administration and the University of Illinois Department of Electrical and
Computer Engineering, respectively. The two radar sites are located on the vast plain area
of Central Illinois, separated by approximately 25 kilometers. The geographical and
observational configuration is considered most suitable for investigating mesoscale
structures in the troposphere-stratosphere region. One horizontally stratified layer at about
15.5 km related to the tropopause, and another in the troposphere at about 8 km were
observed at both radar sites for a long period of time. Velocity fluctuations with periods of
100 minutes < T < 200 minutes were observed to be well correlated during a period of
quiet horizontal wind. A convective thunderstorm on the evening of August 18 coincided
with the dissipation of the tropospheric layer and a decrease in the amount of correlation
observed at 8 km for both echo power and velocity. We present here a qualitative
comparison of lowpass filtered echo power and radial velocities, and a comparison of
vertical power profiles from the two radars.

The Doppler radar technique has been used in the past two decades or so to measure
a variety of atmospheric parameters and phenomena. Doppler radars have proved to be
quite valuable instruments in the study of atmospheric gravity waves, vertical velocity
fluctuations, backscattered power, and other atmospheric properties. Different radar
systems have been employed to study the atmospheric characteristics in a wide variety of
climates and terrains, including those arranged in special network configurations, such as
the Colorado profiler network [Strauch, et al., 1984] and the Penn State Doppler Network
[Williams and Peters, 1986] for compilation of simultaneous data at several related sites. In
the near future the planned wind profiler demonstration system will utilize 30 radar stations
on a grid with spacings of -400 km in an attempt to assess the impact of such a profiling
system on meteorological forecasting ]Chadwick, 1988]. However, each of these
networks mentioned, and most other clear-air Doppler radars, or wind profilers, currently
in use are separated by spacings on the order of 100 km or more. It would therefore be
advantageous to have some radars separated by distances of less than 100 km to aid in the
understanding of certain atmospheric parameters and phenomena on scales less than 100
km.

Ecklund, et al. [1985] and later, Carter, et al. [19891 have made simultaneous
comparisons of stratospheric-tropospheric vertical velocities in the ALPEX campaign in
France, which utilized three closely spaced (-4-6 km) 50 MHz radars. Carter, et al. [1989]
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were able to observe several specific internal gravity wave events and determined detailed
information on their wave parameters. Now with the recent completion of the Flatland
radar [Green, et al., 1988] by the Aeronomy Laboratory of the National Oceanic and
Atmospheric Administration (NOAA), and with the recent modifications for stratospheric-
tropospheric (ST) ob_;ervations made to the Urbana VHF radar, operated by the Department
of Electrical and Computer Engineering at the University of Illinois at Urbana- Champaign,
it has now become possible to study some of the atmospheric characteristics on an -25 km
scale in the vast plain area of Central Illinois.

When originally proposed, it was hoped that measurements made by the Flatland
radar could be compared with those made by the Urbana radar in a joint scientific
experiment [Green, et al., 1986]. It is of particular interest to carry out such a study in the
plain area where the orographic effects are at a minimum [Green, et al., 1988]. Hence, a
study of this type might help in providing answers for questions such as: without the
dominant common source of an orographic nature, how are the velocity fluctuations
observed at distances of 25 km apart related to each other? Under what conditions and in
what frequency band.,; are these velocity fluctuations correlated? Can such a combination
of radars aid in the sludy of the wavelength and speed of gravity waves? It is also well
known that horizontally layered structures in the atmosphere contribute to the enhanced
echo power of vertically pointing VHF radars [Gage and Green, 1978; Riittger and Liu,
1978]. With a 25 km spacing between radars it might also be possible to determine if
certain layers observed in the troposphere and stratosphere exist on such a scale.

Thus, the study of the spatial and temporal structures of those horizontal layers
using the echo powers and measurements of vertical velocities observed in the troposphere
and stratosphere at the Flatland and Urbana sites will provide us with important information
in the effort to understand mesoscale structures and vertical velocity activity in the absence
of orographic influences. In this paper we report the initial results from the analysis of the
data recorded by the Flatland and Urbana ST radars during a 47 hour period on August 17-
19, 1988. In panicalar, echo power and velocity fluctuations were examined for
correlation between sites in the bands with periods T < 100 minutes, 100 minutes < T <
200 minutes, and T > 200 minutes.

To the best knowledge of the authors, our results are the first attempt to study the
stratosphere and troposphere using VHF radar data from two sites separated by about 25
kin. In our observations, two horizontally stratified layers which extended for a long
period of time at both radar sites were observed at approximately 15.5 km and 8 kin,
indicating that these layers are of a scale size greater than 25 km (Figure 1). The upper
layer is most likely related to the tropopause, and we observed that longer period echo
power fluctuations were better correlated than those observed at a band of higher
frequencies (with perixls 100 minutes < T < 200 minutes) at this layer. Correlation of
power fluctuations with periods T < 100 minutes was not apparent The lower layer existed
throughout most of the data set, but disappeared 5 or 6 hours before the approach of a
convective thunderstoixn, which approached the area at approximately 2300 LT. Echo
power comparisons at tais height (8.5 km) indicate that good correlation can be observed in
the lower frequency band (T > 200 minutes), but that it may also be possible to see good
correlation in other frequency bands as well. It is difficult to say that one frequency band
of echo power is more: correlated than another at 8 kin, as a whole, since the data set
observed was for a short period of time and correlation of varying degrees was observed in
each band.

Perhaps the iter._ of most interest was the extremely good correlation observed in
the vertical velocity fluc tuations during the first 600 minutes of data on August 18, a period
of low horizontal wind: at 6.5 km. Figure 2 shows the radial velocities at both sites at the
tropospheric heights for the entire campaign. Figure 3 displays the bandpass filtered radial
velocities at 6.5 km for August 18. We note the excellent correlation. Here, we observed
that in the frequency brad I00 minutes < T < 200 minutes, the correlation was clearly
much better than that observed at periods of T > 200 minutes, although this was not
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Figure 1. Echo power profiles as a function of time and height for (a) the Flatland radar and (b)
the Urbana radar, averaged over 40 minutes on August 17-19, 1988,
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Figure 2. Radial velocity time series for August 17-19, 1988. (a) Flatland velocities are separated
by 2.0 m]s between range gates (.75 km = 2.0 m/s). (b) Urbana velocities are separated by 4.0
m/s between range gates (1.5 km = 4+0 m/s), Only velocity estimates with a corresponding signal-
to-noise ratio > 2.0 are shown•
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the excellent correlation during the f'ast 600 minutes.
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necessarily the case at other times or heights. During periods of higher winds, the
correlation in most bands was not quite as good as this specific instance during low winds.
Carter, et al. [ 1989] observed that over a six week period the vertical velocity fluctuations
at stations spaced -4-6 km apart tended to exhibit increased correlation with decreasing
frequency. However, on several days they isolated some specific wave events during
periods of quiet winds which had periods of -30-90 minutes. We were able to observe
correlated vertical velocity fluctuations here with periods slightly longer than that, but it is
reasonable to expect that stations spaced farther apart might be able to observe waves with
longer periods. It was hoped that greater correlation would be seen during periods of
higher winds due to the absence of orographic effects; this was not necessarily the case,
however. One reason for this lack of significant velocity correlation could be due to the
fact that the Urbana beam points -3" off-vertical receiving contamination from the
horizontal wind during more active periods. But this study does show that correlated
velocity fluctuations do occur over a 25 km separation during a period of quiet horizontal
wind.

As previously mentioned, Carter, et al. [1989] have recently published a more
detailed analysis of internal gravity waves observed during the ALPEX campaign using
three wind profilers with a spacing of - 4-6 km. They have shown that wind profiling
Doppler radars can be quite useful for studying gravity waves in the lower atmosphere.
Although it is beyond the scope of this paper, future experiments could be designed and
conducted at the Flatland and Urbana radars to supply more detailed information on wave
observations on the 25 km scale. The wind profiler demonstration network currently
planned for deployment in the central United States will provide stations with a separation
of-400 km [Chadwick, 19881. Additional information from Flatland-Urbana
comparisons, coupled with comparisons of other radar stations could give a more complete
description of wave parameters over a wide variety of scale sizes.

The particular method of analysis used here has been helpful in identifying the
general frequency bands in which fluctuations in vertical velocity and echo power are
correlated over a spacing of 25 km. However, this method does have problems in
determining the specific frequency or frequencies of waves present in the data set. In the
future, if a data set of longer length is available, additional methods such as the coherence
method used by Ecklund, et al. [1985] and Carter, et al. [1989] would be helpful in
detecting some of the weaker, underlying waves which are not visible with the present
technique. This analysis would be especially helpful in determining the amount of
correlation present for fluctuations with T < 100 minutes, which our present study was not
able to do. Of additional interest to this experiment, another ST system is presently under
construction at the University of Illinois Aeronomy Laboratory Field Station. This system
will be steerable and will have improved range resolution, enhancing the observational
capabilities for future comparisons with the Flatland radar.
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supported by the National Science Foundation under grant ATM-8512513. The authors
are also grateful to Pat Kennedy, Doug Jones, and Bob Scott from the Illinois State Water
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INTERACTION OF MST WIND MEASUREMENTS WITH THOSE FROM THE UARS MISSION

Marvin A. Geller

Laboratory for Atmospheres
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Abstract

NASA's UARS (Upper Atmosphere Research Satellite) will be launched in late 1991

to increase our understanding of the radiative, chemical, and dynamical pro-

cesses in the upper atmosphere. Cooperating MST measurements during this

period will be very important in not only validating the UARS wind measurements

but also in contributing to joint scientific studies,

i. INTRODUCTION

UARS, the Upper Atmosphere Research Satellite, is a major NASA mission that is

planned to be launched in late 1991. The goals of UARS are as follows:

(i) to understand the mechanisms that control upper atmosphere structure

and variability;

(2) to understand the response of the upper atmosphere to natural and

anthropogenic perturbation; and

(3) to define the role of the upper atmosphere in climate and climate

variability.

The UARS instruments will measure energy input into the upper atmosphere, upper

atmosphere species concentrations, upper atmospheric temperature, and upper

atmosphere winds. Thus, during the period of UARS, near global measurements of

winds will be obtained from an altitude of about 10 tun up to about 120 km. MST

wind measurements will be important in complementing the UARS wind measurements

in at least two ways. One is to help in the validation of the UARS measure-

ments and the other is to use the continuous wind measurements at MST sites to

complement the synoptic satellite wind measurements from UARS.

2. UARS WIND MEASUREMENTS

UARS will include the first satellite direct remote sensing measurements of the

horizontal vector wind field in the upper atmosphere. Previous to this, winds

have either been derived by applying balance relationships (e.g., geostrophic

balance) to the satellite measured temperature fields, or wind fields have been

generated by models that are constrained by satellite data. The directly

measured winds on UARS wilt give heretofore unavailable information on ageo-

strophic winds in the tropics and at high altitudes where geostrophic balance

breaks down. It will also allow direct determination of mean meridional

motions rather than the indirect determinations that are being used now.

The UARS wind measuring instruments are HRDI and WINDII.
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HRDI

TheHRDI(HighResolutionDoppler!mager)is a triple etalon Fabry-Perot inter-

ferometer that views the Earth's atmosphere through a two-axis gimbal telescope

and measures atmospheric emission and scattering. The HRDI will measure hori-

zontal vector winds over the altitude range of 10-110 km with an accuracy of 5

meters per second. The HRDI will also give measurements of atmospheric

temperature. Since the HRDI utilizes scattered sunlight to make its strato-

spheric wind measurements, these are daytime only measurements.

The Principal Investigator for HRDI is Dr. P. B. Hays of the University of

Michigan.

WINDII

The WINDII (WIND Imaging Interferometer) utilizes a Michelson interferometer to

sense atmospheric emission and scattering to determine the vector horizontal

wind as well as temperatures over the altitude range of 70 to 310 km.

The WINDI! Principal Investigator is Dr. G. G. Shephard of York University in

Canada.

3. SOME JOINT UARS/MST INVESTICATIONS

The combination of MBT and UARS measurements will enable research to be

accomplished that would be impossible with either data set taken by itself.

illustrate this, we will first briefly discuss some of the ways in which MST

measurements can contribute to UARB studies.

To

The first of these is to help in validating UARS wind measurements. There are

many radar wind measurement stations around the globe. At several locations.

wind profiles that cover a portion of the UARS wind measurement altitudes can

be obtained. Radar wind measurements at the time of UARS overpass will be of

great help in validating the UARS wind data. At some altitudes in the

mesosphere and above, tides will become sufficiently strong so that it would be

meaningless to construct synoptic maps of UARS winds at these altitudes. Radar

winds will be most useful in determining where this is the case. In this

connection, it will be most useful to validate UARS wind mapping procedures by

comparing radar measured winds with UARS mapped wind products.

Radar measurement of gravity waves will be useful in establishing subgrid scale

momentum flux effects that are needed to fulfill the momentum budget of the

large scale equations of motion. Also, radar measurements of wave amplitudes

might be able to be used to detect signatures in the UARS data that occur in

the presence of large amplitude gravity wave events.

Radar measurements of turbulence will be useful in defining the morphology of

turbulent diffusion for use in constituent studies. For example_ the vertical

gradients of constituent mixing ratios should be less in the presence of large

turbulent intensities.

UARS data will be very valuable to MST radar investigations. The most obvious

of these is that the UARS data will provide a global context in which single

station MST data may be viewed. Also, UARS data and station MST data can be

used together to view the interactions between small-scale and large-scale

motions as well as the effects of small-scale motions on the UARS measured

constituent structure.
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4. SOME GUIDELINES FOR COOPERATION

A guiding principal since the inception of the UARS program is that all UARS

data will be made available to all of the UARS Principal Investigators.

Accompanying this principal_ it was also decided that the UARS data will be

under the control of the Science Team for a period of two years after which it

shall be made available to the overall community. This is to allow the Science

Team to validate the data before release.

Thus, it is recommended that a UARS Investigator be identified as the inter-

action point between UAR$ and the ground-based radar community.
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Abstract

An examination of temperatures derived from the Nimbus 6 PMR and

Nimbus 7 LIMS instruments reveals that the winter polar stratopause is usu-

ally elevated and warmer than the adjacent midlatitude stratopause. This

"separated stratopause" occurs in both hemispheres, but is more pronounced

and persistent in the southern winter. It descends with time toward spring,

and exibits week-to-week variability. Observational diagnostics and results

from a 2-D model suggest that gravity wave driving can account for this

separated polar stratopause by driving a meridional circulation, with down-

welling over the winter pole. In the model, the solar heating pattern induces

stronger winter westerlies than summer easterlies, which leads to a stronger

gravity wave driven circulation in the winter hemisphere. Spherical geometry

and the high latitude location of the winter westerly jet combine to yield a

concentrated region of downwelling. Model results suggest that descent of

the temperature maximum with time is probably caused by wave-mean flow

interaction.

z Permanent affiliation: Meteorology Department, University of Wisconsin-Madison

Presently Visiting Professor, Radio Atmospheric Science Center, Nyoto University
3 Permanent affiliation: Department of Atmospheric Physics, Oxford University
4 The National Center for Atmospheric Research is sponsored by the National Science
Foundation.

To appear in the Journal of the Atmospheric Sciences, 46, January 1989.
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PROGRESS IN EXISTING AND PLANNED MST AND ST RADARS

T. E. VanZandt
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Since the Third Workshop on Technical and Scientific Aspects of MST Radar

in October 1985 two radars have gone out of operation: Sunset and Poker Flat.

These radars played important roles in the development of the MST radar tech-

nique and the use of the technique for atmospheric research and operational

meteorology. The Sunset radar, inspired by the research of Woodman and Guillen

at the Jicamarca radar, was the first VHF radar developed specifically to use

the MST radar technique. It demonstrated the feasibility of studying wind and

turbulence using small, relatively inexpensive radars. The Poker Flat radar

was the first MST radar to use distributed transmitters. Some of these trans-

mitters, as well as parts of the antenna, have been used in the development of

other radars discussed later in this session.

Since the last Workshop, several radars have been modified or upgraded,

several more have been brought into operation, and the planning and development

of others has progressed.

At least three themes may be noted in the recent developments. First, the

importance of networks of radars for studying atmospheric dynamics has been

increasingly recognized. In particular, the installation in the central United

States of the 31 radars in the Wind Profiler Demonstration Network starting in

January 1989 will have important impacts on the use of the MST radar technique

for both research and operational meteorology. Unfortunately, there was not

any report on this system at the present Workshop. Second, the global impor-

tance of tropical meteorology has stimulated the location of several radars in

the tropics. Finally, several of the recent and planned radars are located in

very flat terrain, to obviate the geophysical noise from orographical effects.
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New developments at the Jicamarca radio observatory
RONALDF. WOOOMAN,MIGUELLErVAC. AND O'l-ro CASTILLOG.
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An important step has been completed at the Jicamarca Observatory. The new data
acquisition system, including a coherent integration preprocessor, has been placed in
operation. It matches the improved bandwidth obtained with the new transmitter
final stage. The system can process 256 range gates in parallel, from 4 receiver
channels, at a resolution of 250 meters. Two receivers, 128 altitudes can be
processed with 125 meter resolution. User fdendly subroutines have been
developed which facilitate the writing of data taking programs using the new system.
A fairly general program for MST radar type observations has been written and
tested. The program has been written as a module of EXCO, the general
Jicamarca data taken supervisor programs. The system has been used already for
two fifteen day campaigns of mesospheric observations designed to study gravity
wave momentum deposition (Fritz et a1,1988) the implementation of a frequency
domain intefferometer( Kudeki and Stitt, 1987 ) and new high altitude-resolution
mesosphedc and stratospheric observations. A sample of high resolution
measurements will be presented.

A new set of steering cables has been cut. They allow antenna pointing into four
different symmetrical directions, approximately 2.5° from zenith in the N, S, E, and
W directions, and therefore momentum deposition experiments using Vincent and
Reed's technique.

A new Harris H-800 computer is being installed. The system has two 300 Megabytes
disk units and a fast 6250 b.p.i tape drive. The CPU should allow three times as fast
processing as compared with the present system. Two 286 Zenith PC's with EGA
graphics (one color) have been added as terminals and a Apple Laserwritter as a
printer-plotter.

The second transmitter final module is 90% complete. We hope to have it in
operation in a few months. A new solid state power supply at 20,000 Volt, 20 Amp,
for the final stages has been put in operation.

The new data acquisition system, including the special software, and the solid state
power supply have been designed and build at the observatory.

With 2.5 megawatts (5 MW upon completetion of the transmitter upgrade) of power,
9 hectare antenna and the new resolution, the Jicamarca radar should recover a
leading position as the most sensitive radar in the MST field.
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Figure 1. Range-time-intensity plot of mesospheric echoes taken with the new system at 150
meter resolution. The power shades represent a linear scale to enhance the narrowness of the
layers and its intermittence. Powers are normalized with respect to a maximum in the
neighborhood of (+ 1 km, + 10 min). Note that all layers have about 300 meters in width.
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PRESENT AND PLANNED NEW CAPABILITIES OF THE

ARECIBO RADAR SYSTEMS

H. Mario lerkic V.

Arecibo Observatory, P,O, Box 995, Arecibo P.R. 00613.

I. Notes of interest

At Arecibo there are 3 radars (also) used for MST work. Significant

improvements have been made both in the software and hardware parts of the

systems and will be described next. The HF facility near Arecibo has been used

for mesospheric work before but is not mentioned here (interested users are

kindly asked to contact the author).

VHF radar

System operational with very good performance, It has been used

primarily for ST and Ionospheric Modification work and in con-

junction with the UHF radar.

We are working on a severe interference problem that prevents the

use of the automatic pointing capabilities.

Radio interference at nearby frequencies is often severe.

Echoes have been observed also from the mesosphere.

Circular polarization capability is being installed.

UHF radar

Improvement of system's recovery time that should allow us to cover

a region closer to the boundary layer.

We have operated the 430 Mhz system in a monostatic and a bistatic

fashion to observe a common scattering volume from two angles widely

separated (more than I0 degrees).

We have received 16 additional (used) klystrons,

A new digitizing system will make it possible to recuperate 150m

resolution and also allow us to carry on dual frequency experiments

with improved efficiency. The system will be installed during 1989.

New data acquisition software has been written.

S-band radar

New software package to carry on experiments leading to the estima-

tion of spectral characteristics of echoes from the lower strato-

sphere with unprecedented (15m) height resolution. This last develop-

ment was made possible by using our new 2048 channel, 40 Mhz cor-

relator. Figure I shows a gray scale plot of intensities in the

tropopause with coherent wave activity (height resolution is about

20m).
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STRATOSPHERE AND TROPOSPHERE STUDIES WITH THE MILLSTONE HILL UHF RADAR:

RECENT IMPROVEMENTS AND FUTURE PLANS

Stephen A. Cohn

Haystack Observatory

Massachusetts Institute of Technology

Westford, MA 01886 USA

ABSTRACT

After several years of dormancy the S-T mode of operation at the Millstone Hill UHF radar is again

active. During these years a number of hardware improvements were made to the radar system in conjunction

with the continuing incoherent scatter research program. These improvements and other significant changes

expected in the near future are discussed in the context of improved S-T observations. In addition, expansion of

a limited S-T capability to the L-band and X-band radars also located at Millstone Hill is outlined.

IMPROVEMENTS IN THE PAST FIVE YEARS

A review of the status of the S-T program at Millstone Hill in 1983, as well as a description of the

Millstone Hill UHF radar system is given in RASTOGI, 1983. Between 1983 and 1988 the program was inactive

but a number of improvements were made to the hardware which have enhanced our ability to collect
turbulence backscatter:

1. The original X626 UHF transmitter was retrofitted with L-3403 Litton klystrons with 2.5 MW peak / 75 kW

average output.

2. A second UHF transmitter was also built with 2.5 MW peak output and brought on line in September 1986.

3. Both UHF transmitters are operational with a combined peak power output of 5.0 MW.

4. Both UHF modulators were redesigned incorporating fiber optic links for timing control. The modulator

switch tubes were upgraded from Machlett 7248's to Thompson CSF TH-5188's. With the new

modulators high repetition rate operation is now a reality. The present modulator capability is from

l/_s to 2ms with full peak power output. Typical modulator pulse rise time is ll_s and fall time 10p.s.

5. The improved modulator fall time allows sampling at a shorter range. It is now possible to sample down to an

altitude of 1.0 km when using a low elevation angle.

6. The receiver system was upgraded using low noise G-As FET's, and receiver TR circuitry was moved up onto

the back of the 150 foot UHF antenna. Typical system noise temperatures are now 120 K.

The circuit modifications to the receiver room, transmitters, and RF system have given the Millstone

UHF radar a perfect record of meeting project commitments for the past two and one-half years.

CURRENT IMPROVEMENT: EXPANSION TO A MULTIUREQUENCY FACILITY

An effort is currently underway to use two other radars at Millstone Hill for lower atmospheric

turbulence studies. The main scientific motivations for this and some preliminary results are presented in

COHN, 1989. In addition to allowing multiwavelength experiments, the other radars (the Millstone L-band and

Haystack X-band radars) could, when available, be used independently for S-T experiments. Updated UHF

parameters and parameters of the L-band and X-band systems are presented in table 1. Also, typical parameters

used during a lower atmospheric experiment are included in table 2.

To minimize the modifications to these systems the following is planned for radar control and signal

processing. Pointing and transmitter control is handled by each radar individually. The received signal is mixed

to an intermediate frequency (IF) and sent through intersite cables to Tbc UHF receiver room. Also, a timing

pulse is sent from the remote system to synchronize the UHF timing ,, _laat of the other system. The UHF

system mixes the remote IF to 2 MHz, samples it, and does the same processing as would be done to a local

UHF measurement. Although this arrangement does not allow simultaneous use of the three systems, control

can be switched between them in just a few minutes. In the futule, multiple copies of the proposed MIDAS will

allow truly simultaneous operations.
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FUTURE IMPROVEMENT: ANEW D,ATAACQUISITION SYSTI_M

The Millstone Ionospheric Data Acquisition System (MIDAS) is being developed for ionospheric

experiments at Millstone Hill. MIDAS is portable and, together with an interface specific to each radar, will

control antenna motion, transmitter waveforms, and signal sampling and processing. Many of the new and

enhanced capabilities of the system will be beneficial for collecting S-T as well as ionospheric data; however, to

take advantage of these some development specific to the S-T program will be necessary.

The added capabilities include:

1. The MIDAS system will have a larger processing capability, allowing more samples to be collected per pulse.

This could eliminate the tradeoff now made between higher spatial resolution and greater height

coverage.

2, The MIDAS system will be capable of supporting coded pulse experiments at higher resolution than the

existing system.
3. When several of the receiver chains have been built, simultaneous observations with the site's three radars will

be possible.

4. The configuration of the computers controlling the MIDAS will allow much more real-time processing than is

now possible.

In addition to its use at Millstone Hill, it is possible to use the MIDAS system with other radars which

have adequate transmitters but cannot at present do S-T measurements because they lack the processing
software.

Table 1

CHARACTERISTICS OF THE MILLSTONE HILL RADARS

Points in spectrum

Pulse Length (p.s)

Range Resolution (kin)

Receiver Bandwidth (KHz)

Minimum altitude (km)

Interpulse period 0zs)
UHF Steerable

Coherent Integrations 8

Frequency Window (Hz) _+60

Frequency Resolution (Hz) 0.47

Max Radial Velocity (m/s) _+21

Velocity Resolution (m/s) 0.16

256

10

1.5

100

1.

1036

L-band

3

_+161

1.26

_19

0.14

X-band

1

_+483

3.77

_7.2

0.06
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RECENT PROGRESS WITH THE SOUSY VHF RADARS

Peter Czechowsky, Bernd Inhester, Jiirgen Klostermeyer,

Iain M. Reid, Rfidiger Riister and Gerhard Schmidt

Max-Planck-Institut f/it Aeronomie, Katlenburg-Lindau, FRG

The antenna system of the mobile SOUSY VHF Radar on the island of Andcya (69°N,

16°E) in Northern Norway has recently been upgraded from four to six beam directions.

Beams are now directed towards the SW, W, NW, N, and NE. Apart from this, the sys-

tems have not been improved. However, more of their capabilities have been utilized.

In August 1986, the mobile radar was operated with a 44 Yagi antenna and 17 kW

peak power in Lindau, 30 km from the Harz radar (52°N, 10°E). Both radars operated

in a 5 beam (EWNSV) configuration (see Figure 1), and seven days of simultaneous

observations were obtained. These allowed the upward fluxes of horizontal momentum

to be calculated, and an example from the radar located at Lindau is shown in Figure

2. These observations are also being used to the vertical energy flux and its power

spectral density (Figure 3). During the MAC/SINE campaign in Northern Norway

in summer 1987, the very thin strong layers near 86 km typical at this time of year

were detected in the grating lobes of the antenna at apparent ranges of about 104 km

(see REID and CZECHOWSKY, this volume). These additional beam directions have

been used to investigate the anisotropy of the scattering irregularities. Measurements

of the component of the upward flux of horizontal momentum per unit mass in the

SW NE direction, and the anisotropy of the horizontal velocity field were obtained

from measurements made in the main lobes of the antenna (see REID and ROSTER,

this w)lume). High resolution measurements were obtained within periods character-

ized by strong vertical motions. The time and range resolutions were 3.5 s and 75 m

respectively. Results are shown in Figure 4, 5 and 6. The Harz radar was operated

on a campaign basis during summer 1988 using a 13 beam configuration (EWNS at

3.5, 7 and 10 °, and vertical) that permits redundant estimates of the Reynolds stress

tensor and of the two dimensional aspect sensitivity of the scattering irregularities to be

obtained. Thes,, observations demonstated for the first time that the very strong radar

returns from the summer polar mesopause region are also obtained, on occasion, from

the mesopause in summer at 52°N. An example is shown in Figure 7. The development

of a UV (351 nm) Lidar has proceeded in parallel, and it is now capable of measuring

density and temperature up to 90 km.
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located in the Harz mountains (FRG). Each square represents a subsystem

consisting of four 4-element Yagi antennas. The grey sca]e indicates the
electrical tapering: darker symbols are fed with higher power. The main

beam is steerable by means of electronic phase shifters in any requested

azimuth up to an off-zenith angle of 15 ° . This kind of configuration is

now used routinely with this radar.
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Fig. 2 Tropospheric values of the upward flux of zonal (pu_w _) and meridional mo-

mentum (prOw ') for a seven day period and the density weighted zonal, merid-
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Height-time intensity plot of the signal-to-noise ratio (Pv)

measured in the vertical beam of the stationary SOUSY

VHF Radar located in the Harz mountains of Germany in

summer 1988. Values are very high, and the echoes occur
above 80 kin. This is in contrast to radar returns obtained

at other times of the year using t[:e same facility, but

very similar to the characteristics of echoes returned from

near the polar mesopause in summer (the so called Polar

Mesopause Summer Echoes or PMSE). We have termed

this echo the "Mesopause Summer Echo" or MSE (see

REID et al., 1988).



465

REGENT $OUSY PUBLI_ATION$

Czechowsky, P., G. Schmidt and R. Riister, The Mobile SOUSY-Doppler Radar - Technical

Design and First Results, Handbook for MAP, 9,433 - 446, 1983.

Czechowsky, P., C. Schmidt and H. Kopka, Medium Frequency Radar Observations in the Mid-

dle Atmosphere, J. Atmos. Terr. Phys., 4__, 729 -732, 1983.

Czechowsky, P., G. Schmidt and R. Raster, The mobile SOUSY Doppler Radar: Technical de-

sign and first results, Radio Science, Vol. 19, No. I, 441-450, 1984.

Czechowsky, P., R. Raster and G. Schmidt, First results of VHF-radar measurements during

the MAP/WINE Campaign, Adv. Space Res., Vol. 4, No. 4, 47-50, 1984.

Czechowsky, P., I. M. Reid, R. Riister and C. Schmidt, VtlF Radar Echoes Observed in the

summer and Winter Polar Mesosphere over Andoya, Norway, J. Geophys. Res., accepted

for publication, 1988.

Czechowsky, P., I. M. Reid and R. Riister, VHF Radar Measurements of the Aspect Sensitivity

of the Summer Polar Mesopause Echoes over Andenes (69°N, 16°E), Norway, Geophys.

Res. Lett., 15, 1258 - 1262, 1988.

Franke, J., C. H. [flu, J. Fu, R. R(ister, P. Czechowsky and C. Schmidt, Multi-Beam Radar

Observations of Winds in the Mesosphere, J. Geophys. Res., in press, 1988.

Hocking, W. K., R. Riister and P. Czechowsky, Absolute reflectivities and aspect sensitivities

of VHF radio wave scatters measured with the SOUSY radar, J. Atmos. Terr. Phys., 48,

131-144, 1986.

Elostermeyer, J., Parametric Instabilities of Internal Gravity Waves in Boussinesq Fluids with

Large tleynolds Numbers, Geophys. Astrophys. Fluid Dyn. 2fi, 85 - 105, 1983.

Klostermeyer, J., Observations Indicating Parametric Instabilities in Internal Gravity Waves

at Thermospheric Heights, Geophys. Astrophys. Fluid Dyn., 29, 117 - 138, 1984.

Elostermeyer, J. and R. Riister, VHF radar observation of wave instability and turbulence in

the mesosphere, Adv. Space Res., Vol. 4, No. 4, 79-82, 1984.

Elostermeyer, J., Experiments with maximum entropy and maximum likelihood spectra of

VHt" radar signals, Radio Sci., 2!1,731 - 736, 1986.

Etostermeyer, J., P. Czechowsky, R. Riister and C. Schmidt, Die SOUSY-VHF-Radars, Mete-

orol. Rdsch., 41. Jg. Heft 1, 12 - 22, 1988.

Maekawa, Y., T. Aso, R. RSttger, P. Czeehowsky, R. R/ister, C. Schmidt, I. Hirota, R. F.

Woodman and S. Kato, A cooperative synchronous observation of winds and tides in the

tropical lower stratosphere and mesosphere using VHF radars at Jicamarca and Arecibo,

J. Geomag. Geoeleetr., 3_., 81-97, 1986.

Meyer, W., Philbrick, RSttger, Raster, Widdel and Schmidlin, Mean winds in the winter mid-

dle atmosphere above northern Scandinavia, J. Atmos. Terr. Phys., 4_9,,675 - 687, 1987.

Reid, I. M., R. Riister and C. Schmidt, VHF Radar Observations of Cat's-eye-like Structures

at Mesospheric Heights, Nature, 2_t_fl_,43-45, 1987.

Reid, I. M., R. Raster, P. Czechowsky and C. Schmidt, VHF Radar Measurements of Momen-

tum Flux in the Summer Polar Mesosphere Over Andenes (69°N, 16°E), Norway, Geophys.

Res. Lell., 15, 1263 -- 1266, 1988.



466

Reid, I. M., P. Czechowsky, R. R_ster and G. Sehmidt, First VHF Radar Measurements of

Mesopause Summer Echoes at Mid-Latitudes, Geophys. Res. Lett., in press, 1988.

Reid, I. M., Observation of stratified layers in the mesosphere and lower thermosphere (50 -

100 kin) using radar techniques, Adv. Space Res., in press, 1988.

RSttger, J., P. Czechowsky, R. R(ister and G. Schmidt, VHF Radar Observations of Wind ve-

locities at the Arecibo Observatory_ J. Geophys., 6__, 34-39, 1983.

Riister, R., P. Czechowsky, G. Schmidt and K. Labitzke, VHF radar observations in the

stratosphere and mesosphere during a stratospheric warming J. Atmos. Terr. Phys.,

Vol. 45, 161-169, 1983.

Riister, R. and J. Klostermeyer, VHF Radar Observations of a Kelvin-Helmholtz Instability in

a Subtropical Jet Stream, Geophys. Astrophys. Fluid Dynamics, Vol. 26, 107-116, 1983.

Riister, R., Winds and waves in the middle atmosphere as observed by ground-based radars,

Adv. Space Res., Vol. 4, No. 4, 3-18, 1984.

Riister, R., J. Klostermeyer and J. RSttger, SOUSY VHF radar measurements in the lower and

middle atmosphere, IEEE Trans. Geosc., GE-2____4,966-974, 1986.

Riister, R. and J. Klostermeyer, Propagation of turbulence structures detected by VHF radar,

J. Atmos. Terr. Phys., 4__.,743 - 750, 1987.

Riister, R., P. Czechowsky and G. Schmidt, Planetary waves and tides in the summer meso-

sphere at polar latitudes, J. Atmos. Terr. Phys., in press, 1988.

Riister, R., J. Klostermeyer, P. Czechowsky and G. Schmidt, VHF-Radarmessungen in der At-

mosphgre, PROMEI', to be submitted, 1988.

Rtister, R. and I. M. Reid, VHF Radar Observations of the Dynamics of the Summer Polar

Mesopause Region, J. Geophys. Res., submitted, 1988.

Sehmidt, G., R. Riister and P. Czechowsky Complementary Code and Digital Filtering for De-

tection of Weak VHF Radar Signals from the Mesosphere, Handbook for MAP, 9, 338

343, 1983.

Schmidt, G. and P. Czecbowsky, Technical Design and Application of the SOUSY Doppler

Radars, Kleinheubachev Bet., 43 - 51, 1987.

Thomas, L., R. J. Winder and R. Riister, The characteristics of VHF radar echoes from the

tropopause region near a jet stream, J. Atmos. Terr. Phys., 4__8_,261-265, 1986.

Thrane, E. V., T. A. Blix, C. Hall, T. L. Hansen, U. yon Zahn, W. Meyer, P. Czectiowsky,

G. Schmidt, H.-U. Widdel and A. Neumann, Small Scale Structure and Turbulence in

the Mesosphere and Lower Thermosphere at High Latitudes in Winter, J. Atrnos. Terr.

Phys., 4__, 751 - 762, 1987.

Waterman, A. T. and P. Czechowsky, Upper tropospheric structures with VHF radar at

Arecibo, Proc. Ursi Commission F 1983 Symposium, Louvain, Belgium, June 1983 {ESA

SP-194), 89 - 94, 1983.

Waterman, A. T., T-Z Hu, P. Czechowsky and J. RSttger, Measurement of Anisotropic Permit-

tivity Structure of Upper Troposphere with Clear Air Radar, Radio Sei,, 2_, 1580 -1592,

1985.

Waterman, A. T., T-Z Hu, P. Czechowsky and J. RSttger, Variability in Doppler Slant-Beam

Measurement of Horizontal wind, A Case Study, Radio Sci., 10, 1214 - 1222, 1985.



467

PROGRESS IN MF RADAR MEASUREMENTS AT SASKATOON

C.E. Meek, A.H. Manson, and N.D. Lloyd

Institute of Space and Atmospheric Studies

University of Saskatchewan, Saskatoon, Canada

Abstract: A coherent real time wind (COHRTW) system has been installed at

the MF radar site. With the aquisition of professionally designed receivers

it is now possible to set optimum gain for each height gate ( 3 Km resol-

ution), increase the signal-to-nolse ratio with coherent integration, and

obtain reliable signal strength estimates. The system is described, and

some long term angle of arrival statistics discussed.

The institute Fabry-Perot interferometer has been running for more

than a year now on green line (557.7 rim). A comparison of airglow winds

with the radar data is shown.

COHERENT REAL TIME WIND SYSTEM

The coherent receivers were designed and built by Rob Strother-Stewart

to have 80 dB gain control ( eight 10 dB steps) with gain switching faster

than 20 _sec (3 Km), minimum detectable signal of 0.25 _V across 50_[, and

0/180 ° phase flip control. Four of the receivers are dedicated to the

coherent wind system, which operates on our normal 4-anteruna "Y" array. The

phase flip is not used to eliminate receiver offsets at the moment. Instead

a long term running mean is maintained.

The receiver interface, built by R.T. Miller, has 8 A/D channels, and

is run by an Apple II micro-computer which controls receiver gain, reads

the A/D data at 32 height gates (49-142 Km), does coherent integration,

maintains running mean receiver offset tables and RMS values (for use in

settiog gains), and converts the integrated amplitudes to bit-amplitudes

using the running offset values. When each block of blt-amplitudes ( 4 sec)

is completed, it is sent to a second Apple II, which does rtulning complex

cross and mean auto correlations by counting bit-matches between sequences.

This second Apple is in charge of the system, and sends a gain-height

pattern, integration, and record length parameters to the first to start a

record. It aiso sends the coapieted correlations to a thilxi computer, a
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C128,whichdoesthe full correlation analysis (FCA)_ndsendsthe results
backto the Applewhichwrites themon9-track tape. Recordsare5 minin
length ( 512point bit-amplitudesequences).

Thereare severaladvantagesto a coherentsystem.Oneis that exter-
n8_linterfering signalsreflected fromthe ionospherewhichhavea ground
fading patternsimilar to the wantedsi_Tlalare automaticallyrejected
becausetheyare non-coherent.Thesystemalso reducesthe problemof
multiple hopechoes(whichcanappearat anyheight in the receivinginter-
val of a subsequenttransmittedpulse)becaueethe transmittersynchtiming
is independentof the 2 MHzsignal phase.Thusthe ptulse/integ-rationrate
canbeas highas the hardwarewill s-flow.

In addition to the normalFCAparameters(windmagnitudeanddirection,
meanpatternshapeandtilt, andinternal decayrate), the signal strength,
meanvertical Doppler(fromauto-correlationphaseversuslag), andthe
meanphasedifferencebetweenantennas(for angleof arrival, AOA,calcu-
lations) are also available.

A comparisonbetweenthis systemandthe RTWsystem- non-coherent,

which has been ]running for more than I0 years now, and probably will be

kept rurming as long as possible - shows a bias in wind speed (COHRTW

smaller than RTW) of 20-30%. The reason for this is not known as yet. Until

it is, we confine our use of the data to dimension-less quantities such as

wind direction and phase parameters (Doppler, AOA).

The data rate is much improved with coherent integration: Figure l

compares the RTW and COHRTW nu/,ber of wind values per hour. The minima

in theRTWplot at 85, 91, ... Km are due to the poor gain switching char-

acteristics of the non-coherent receiver.

ANGLE OF ARBIVAL

The zero lag cross correlation phases can be used to calculate AOA, if

it exists. Figllre 2 shows histograms of these phases for the three pairs of

antennas in the array. The position of the peak at the lowest heights is

taken to represent the zenith, and is used to calibrate the other phase

differences. The sense of tilt of the AOA is indicated on either side of

the histogram. The cha_nge in phase with height is interesting - almost as

if the ray normal rather than the phase normal were being measLured.

To see how often the A0A can be calculated, distributions of the norm-
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pair spacing is 1.15 _ ). "Zero phase" is taken from the

peak of the 64-73 Km histogram. Geographic tilt directions

are noted on either side of centre. Data gave been rejected

if any of the three zero-lag correlations in a height/record

is less than 0.2 .
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alized phase discrepancy (N_D: the absolute value of the sum of the three

phase differences divided by the sum of their absolute values) have been

plotted in Figure 3. This parameter
100

should be zero for a plane phase front

(i.e. a defined AOA). The expected

distribution for random phases is also

plotted. It appears from this data

that the AOA cannot be found for the

lowest heights on the average, and

is best (though still near random) at

E-region heights. Irla_asto routinely

correct the ver_clcal Doppler for

possible oblique propagation on an

individual basis are now of doubtful

value. However large scale waves might

produce some good segments of AOA data.

. S/ ....
,'//" --76-85

--s8-97
,//_ ......

O0_ "RANDOM

NOD

Fi_e3. N_D distributions

for the data pre-

sented in Fig. 2.

FABRY-PEROT INT_RFEROMETER (FPI)

Figture 4 shows a sample comparison between airglow (15 min resolution )

and radar (RTW, hourly means) data : Sept. 19-21, 1987. Because of the

reduced number of RTW winds at night, a mean day has also been formed for

the month. If tidal oscillations are dominant, this will be a reasonable

representation of night-tlme data. This mean day appears at the top of the

figure, repeated for each day compared. The middle of the figure shows the

available hourly means for the specific date/time, and the bottom gives the

FPI data. The agreement is geners_lly good - except maybe in the early morn-

ing of Sept. 20.

The three month period from which these FPI data were selected had

only 9 good airglow nights - uncontaminated by moon, clouds, or aurora.
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REAL TIME WIND SYSTEM AT TROMS_

T.L. Hansen and T. Trondsen

Institute of Mathematical and Physical Sciences

University of Tromso, Tromso, Norway

and

C.E. Meek

Institute of Space and Atmospheric Studies

University of Saskatchewan, Saskatoon, Canada

Abstract: A real time wind meast_ring system (spaced anternla) b_%s been

placed at the Troms_ MF radar site to run continuously in conjunction

with the partial reflection experiment and especially during the MAC-

SINE and MAC-EPSIL_ campaigns. Since Troms_ is north of the arctic

circle, it is interesting to see how well such a system operates here

summer and winter. Data on signal strength and quantity of wind results

are presented.

EXPERIMENTAL SYSTEM

A loop array (figure I) of 2 metre diameter shielded loops and a real

time wind (RTW) analysis system, similar to that at Saskatoon, was set up

at the Ram_fjordmoen MF radar site (69.6°N, 19.2°E) near Troms_ in June '87

to run during the MAC-SINE (June-July'87) and MAC-EPSILON (Oct,Nov'87)

campaigns. It operates on O-mode transmission in parallel with the partial

reflection experiment (PR]_) or alone when the PRE is not in use. Trans-

mitted power is 50 KW with a 20 _sec pulse ( 5 Km resolution) at 2.78 MHz.

Sampling is at 3 K_n intervals from 49 to 142 Km (range). Up to the end of

August '87, the system ran at a rate of 1 pulse per antenna per 0.36 sec

(the antennas are cycled through one receiver), and despiking was employed

- viz. in each antenna amplitude sequence, if a signal is greater than the

sum of the two a/jacent signals, it was replaced with the average. Later
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in the summer the system program was modified to do non-coherent averaging

over 3 or 6 pulses depending on whether the PRE, which needs X-mode, was

operating. Given a normal random noise background, this increases the

effective signal-to-noise (S/N) ratio for correlation analysis by 5 or 8

dB respectively; however despiking is no longer possible, which is a draw-

back if spike interference (e.g. from co-located experiments) is common.

Comparisons between loops and

the normally used half-wave folded

dipoles are not yet possible at

Troms_, but experiments at Saskatoon

on admittedly inferior loops suggest

a loss of _25 dB in S/N with respect

to dipoles at a quiet site. On the

positive side, shielded loops seem

to be relatively unaffected by sur-

rounding structures, and mutual

coupling for close spacings is not a

concern.

SIGNAL STRENGTH

Figure 2 shows smoothed signal/

noise contours (very unrefined ca.i-

_62m

M
N 124m

-/

1oo__ 1

. ,7,TU------/

LOO_ array -RGmflordmoen site

Figure I. Loop array

ibration) for summer and winter data. The noise level is the signal at the

IOCQI noor_

7(oi 2(bl 2(c1

Figure 2. Signal/Noise contours. Nov'8? and Jun'88 used 6 point integration.
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lowestheight gate. Notethat all heights in this paperare "virtual"
(i.e. basedonechodelayonly). Thereis a markedchange,with summer
maximanearlocal noonandwinter maximanearlocal midnight.TheJun_88
profile indicatesa solar controlled E-region.Thepuzzlingdifferencebe-
tweenJun'87 andJun '88 contoursis still underinvestigation. Thechange
to summerscatter occursjust after the endof March.andmaybeconnected
with the changeto summercirculation. Thereasonforthe dropin S/Nbe-
tweenJun '87 andJun '88 is undetermined.It is likely that the trans-
mitter, whichbrokedownin July, wasdeterioratingat this time.

NUMBEROFWINDVALUES
Figure3 showsthe averagenumberof windvaluesper heightper hour

(maximumof 12)for summerandwinter 1987.Attemptshavebeenmadeto

Tromsd Jun-Jul'87 number/hr/height

50 I

Iocat noon

3(0]

( 0.02

TromsP; Nov-Dec'87 nurnher/hr/height

]

3_b)

Fly, Ire 9" Number of wind values per height gate per hour.

eliminate spurious values caused by external interfering signals, usually

by requiring that the signal be at least 5 dB above the "noise". The major

loss in winter data is probably due to lower echo strength (i.e. not just

a reduction in S/N ).
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COMMENTS
Finally, Figure4 showsa histogramof the angleof patternelongation

producedby the full correlation analysis. Althoughnot shownin Figurei,
there is a_70mlattice towersupportinga log-perlodiclonosondeantenna
betweenloop#I and#2. It wasexpectedthat this towerwoulddistort the
pattern, but the datashownoconsistentdistortion at different heights.

Fi_nlre 4. Histograms of pattern

tilt angles.
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THE STATUS AND PLANNED DEVELOPMENTS OF EISCAT
IN MESOSPHERE AND D.REGION EXPERIMENTS

C. La Hoz, J. Rrttger*, M. Rietveld, G. Wannberg
EISCAT Scientific Association

RO. Box 812, S-981 28 Kiruna, Sweden
(*on leave from Max-Planck-Insdtut f'_ Aeronomie)

S.l. Pranke

University of Illinois
Urbana, 61801 Ilinois, USA

0. ABSTRACT

The EISCAT VHF radar system at 224 MHz is a very powerful instrument for the study of the meso-
sphere and the D-region of the ionosphere. Recently, important new measurements have been carried
out in these regions of the polar atmosphere employing advanced techniques. The focus of the re-

search effort in two campaigns in the summer of 1987 and 1988 has been the Polar Mesospheric
Summer Echoes or PMSE. These radar returns originate from very thin scattering layers that seem
to occur only during summer in the cold polar mesopause between 80 and 90 kilometres of altitude.

The seemingly extreme fine structure in time and in space of these echoes constitutes a challenge to
the experimentalist and the theoretician alike,

We have made extensive use of the advanced capabilities of the EISCAT system to study the
PMSE, particularly in the 1988 campaign. To resolve the sub-kilometer structure present in these

layers we have implemented long Barker codes, complementary codes and space and frequency in-
terferometer schemes. The spatial resolution attained with the pulse codes in the longitudinal di-
rection (that is, along the antenna beam) has been 150 and 300 metres. Depending on the level of
longitudinal structuring, it might be possible to improve this resolution to tens of metres with the
use of frequency interferometry. Spatial interferometry allows to resolve transverse structuring, and
most important, it provides measurements of the transverse velocity when such structuring exists.

The relatively small data base so far obtained has considarable potential to help understand the
dynamics of the polar mesosphere and the mutual influences with other geophysical and geomag-
netic phenomena. Witness the many papers presented in this conference based on these EISCAT
measurements. The capabilities of the EISCAT radar system will play an important role in the reso-
lution of intriguing questions posed by the observation of mesospheric turbulence with characteristics
unaccounted for by conventional theories of turbulence.

There is ample room for further improvements and optimisation of the experiments. In particu-
lar, real-time and off-line data processing and analysis require considerable work. Development of
new processing schemes and special processors are an important part of our plans for the future. A

challenging problem is the design of an experiment to measure simultaneously, although perhaps not
at the same altitudes, the strong coherent scattering produced by PMSE layers, and the very weak
scattering produced by the tenuous plasma of the D-region.

1, INTRODUCTION

The EISCAT radar system has been described for the first time in a MAP Handbook in Volume 9
(ROTI'GER et al., 1983) and subsequent developments in middle and lower atmosphere applications
in Volume 14 (ROTI'GER, 1984). The present report describes the further developments that have

occurred in the interim period until autumn 1988.

Improvements in the UHF radar have taken place in the area of system reliability, the basic
system and its specifications remaining fairly stable. Therefore, the description of the UHF system
contained in the two references above are still actual. In contrast, the VHF system has undergone
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repeated changes and modifications with consequent off and on periods. Despite the fact that the
situation has not been--and is not yet--stable, a good number of important technical and scientific
results in middle atmospheric research 'have been achieved. In section 2 we will briefly describe the

specifications of the VHF system making parenthetical remarks on temporary limitations that exist
at the time of writing.

An important experiment code-named GEN- 11 was designed in 1986 (TUR UNEN, 1986a,b) and

used regularly for aeronomical and dynamical studies of the D-region, mostly with the UHF radar. In

Section 3 we will first briefly describe GEN-11 and follow up with a summary of selected scientific
results that have been obtained using this program.

The so-called Polar Mesospheric Summer Echoes were observed for the first time at EISCAT
in 1987 with the GEN-11 program running the VHF radar (HOPPE et al., 1988a; R()TTGER et

at., 1988). Further technical developments have been stimulated by the PMSE, as GEN-11 is very
suitable for incoherent scattering studies of the D-region but does not match well the space and

time scales of the PMSE. Section ,1 describes these developments, namely the first application of
complementary codes and coherent integration at EISCAT embodied in a series of programs that
were employed for the first time in a campaign in summer of 1988. A brief highlight of scientific

results obtained during this campaign is also included in this section. Other papers in this volume
give more detailed reports on several scientific results obtained in the 1987 and 1988 campaigns.

The long term plans to improve the MST capabilities of the EISCAT radars is discussed in detail by
WANNBERG et al. (1989) in this issue.

2. THE EISCAT VHF SYSTEM

The VHF radar operating at 224 MHz should be in general better suited for middle atmosphere studies
than the UHF radar. When the scattering mechanism is turbulent scattering, the half-wavelength of
the VHF radar is within the inertial sub-range of atmospheric turbulence up to about 40 kin, whereas
the one of the UHF radar up to about 20 km (RO'VrGER, 1982). When the scattering mechanism

is incoherent scattering, the sensitivity of the radar is larger at the longer wavelength due to the
fact that the electrons--which cause the scattering--have stronger coupling to the ions at the larger
scale sizes 1. Another important "scattering" mechanism is specular reflection, and in this case the

reflections are also stronger at the longer wavelength.

Within the conventional picture described above of the known scattering mechanisms, it is not
surprising to conclude that the VHF radar is a better tool for middle atmosphere studies than the UHF
radar. Experiments demonstrate that this conclusion is correct. However, the experiments also point
to fundamental gaps in our understanding of scattering mechanisms in the middle atmosphere, as

strong scattering is observed under conditions where no scattering would be expected, vis-d-vis, the
PMSE.

Table I summarises the more important characteristics and parameters of the EISCAT VHF radar.
At the time of writting (March 1989), the VHF system was only in partial operation. The parameters

that apply at present temporarily until full operation is achieved are as follows: There is only one

klystron with 1.5 MW of peak power at 4.5 % duty cycle and operating frequencies at n = 5,6,7,8.

The range of allowed pointing directions has also been constrained temporarily to directions
near vertical and at low elevations towards the north due to interference problems. It is expected that
the transmitter shortcomings will be resolved in the course of the present year. The restrictions on

the pointing directions may take longer, even as when gradual extensions of the allowed limits are

I We recall that the ion line in incoherent scattering exists at all due to the collective Coulomb coupling between
electrons and ions and that it is the electrons alone that producethe scattering. At some scales that are related to the
Debye length, the collective interactions cease.
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Table I. EISCAT VHF Radar Condensed Specifications

Transmitters (Tx)

Peak power
Maximum duty cycle

Operating frequencies
Pulse width
Pulse Rise time

Maximum Pulse Rep• Freq.
Modulations

Antenna
Location

Frequency band
Panel Dimensions

Feed system
Drives and Controllers
Slew rate

Mechanical Steerability

Electronic Steerability

On-axis Beam-width
Gain

On-axis Effective Aperture
Normal Operating Modes
Mode I

Mode II

Receivers (Rx)

Front end Amplifiers

System temperature
IF bandwidths

Detector type
Post-detection filters

: Two Klystron based Tx's (A and B)
: 2•5 MW perTx
: 12.5%

: 222.4+ 0•2nMHz, n= 1,2,••• 16

: 1-1000 #sec
• <_0.1 #sec
: 1000 Hz

: Pulsed, phase flip, Freq. step
: Four Parabolic cylinders (Panels 1,2,3,4)
: 69°35'11.9408" N
: 19°13'13.230ff t E, 85.3m alt.

: 224 4- 1.25 MHz Tx, +11.25 MHz Rx
: 30m (E-W) x 40m (N-S)
: 128 crossed dipoles (32 per panel)
: One per panel, Master-Slave modes
: 5° per minute• See below.
: In magnetic meridian plane (0.5 ° W of N)
: Between 30°S and 60°N of zenith

: By manual recabling of the feed
: Off-axis 4-21.3 °, Step=l.25 °
: 1.7 ° N-S, 0.6 ° E-W
: 46 dBi
: 3250 m 2

: Mode I and Mode II

: One antenna with all 4 panels aligned
: Klystron A feeding V dipoles
: Klys_on B feeding H dipoles
: Linear and R or L circular polarization
: Pol. flipping from pulse to pulse
: Two independent antennas Tx/Rx

: with panels 1 + 2 and 3 + 4
: Only circular polarization
: 8 tunable channels at 2nd IF level

: 4 Solid state, > 50 dB gain
: 250-350°K, depends on pointing
: 1.2, 8.8, 18.0 MHz
: Phase coherent demodulator

: Butterworth and Linear, variety of BW's

taking place. Persons that are interested in more detailed information or in updated characteristics
are advised to contact the EISCAT Headquarters in Kiruna, Sweden.

In addition to the general advantages of the VHF radar mentioned above, the properties of the
antenna make it avery promising tool for applications of space interferometry. The paper by LA HOZ
et al. (1989b) in this issue on the first interferometry measurements at EISCAT contains additional

information on the VHF system relevant to this application. This paper contains also a schematic
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diagram of the VHF antenna. The multifrequency transmitter makes it easy to implement frequency
interferometry. See Franke et al. (1989a) in this issue.

3. THE GEN-II EXPERIMENTS

The GEN-I1 program belongs to the GEN family of programs designed by T. TURUNEN (1986a)
and is optimised for D-region incoherent scattering measurements (GEN stands for GENeralised).
The UHF version of this program measures 22 lags of the autocorrelation function at 42 gates. The
lag separation is 2.222 msec and the maximum lag is at 46.662 msec. The first gate is at 70 km. With
a range increment equal to the range resolution of 1.05 kin, the last gate is at 113.05 kin.

Figure 1 shows a schematic diagram of the transmit/receive signals. We will give a somewhat
simplified explanation of this diagram. For more details the interested reader may consult TURUNEN

(1986a). Pairs of Barker coded pulses are transmitted. The code has 13 bauds with a baud length of
is 7/_sec that gives a range resolution of 1.05 km. The separation between two consecutive pairs of
pulses is 2.222 msec. The separation between the two pulses that constitute a pair is itself variable
and has a cycle of 5. This pair separation (between trailing and leading edges of the pulses) is equal to
one baud length, or 7 _sec, for the first pair, 14 _sec for the second pair, and so on, up to 35 _sec for
the separation between the last (fifth) pair of the cycle. The second pulse of each pair is the negative
of the first, i.e., it has a 180 o phase flip.

CHI

•+PULSE -PULSE

•H+H-I-I.I.I-I.H.I [-I-H-H.I.H-H-IH-I
_ GAP_ N_7 us? N=l,2 ,5

gl p$

t IB9-217 ps

CS23 [] USZ3

[] IR&NSMII

[] RECEIVE

[] CALIBRATE

PI P2

•_--- 2 222 ms---_

P3 P4 P5 P1 P2

IOTALCYCLE /,L=2222ms

Fig. l. Transmit/Receive modulation of GEN-11

The autocorrelation function is estimated in real time by averaging products of samples corre-
sponding to the four possible delays between any two pairs of double pulses up to a maximum delay
equal to 21 × 2.222 = 46.662 msec. These 4 products are not all at exactly the same delay, but differ
by at most 2 x 5 × 7 = 70l_sec, which happens for the 5th lag, all the other lags having smaller "lag
averaging". The calculation is done taking proper care of sorting out the effects of the phase flip of
the second pulse of each pair by proper change of signs and by using separate storage arrays.

The zero lag of the ACE that is, the total scattered power, is obtained in an approximated way:
it is in fact an average of the ACF at the different lags determined by the 5 pulse pairs. Since the
first pair is separated by 91 + 7 = 98_sec and the last pair by 91 + 5 x 7 = 126#sec, the middle

point of these lags occurs at 112 _zsec. This approximated zero lag is termed the "quasi-zero lag" or
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the "pseudo-zero lag". For the intended altitude ranges that GEN-11 is used this approximation is

usually very good, since then the correlation times are much greater than 112 #sec. The accuracy of

the zero lag can be easily improved during off line analysis by extrapolation techniques.

GEN-11 includes also the calculation of estimates of the background noise power as well as the

power of a known calibration signal.

The benefits paid by this relatively complicated design are in terms of a drastic reduction of con-

taminating contributions due to several types of clutter and to DC offsets that are specially deleterious

in these experiments since they can be much larger than the wanted signals.

8,,y
83.6km_

79.4 km.J.

-100
!

100

Frequency (Hz)

Fig. 2. Measured (dots) and fit-

ted spectra (lines).

The analysis of data obtained with GEN- 11 typically

involves first the sorting out of the complicated structure of

the output of the real time program in order to obtain con-

ventional gated ACF's. This step is usually preceded by

post-integration, as the real time integration is only 10 sec.

Correction algorithms are applied such as noise and ad-
ditional DC/clutter substraction and elimination of Barker

code sidelobes (HUUSKONEN et al., 1988). Estimates of

the Doppler velocity and spectral widths can be done read-

ily. Other parameters such as electron density, collision

frequency, temperature, and positive/negative ion concen-

tration are more difficult to obtain due to the fact that--

with the exception of the electron density--all are directly

related to the spectral width according to the generally

accepted model of incoherent scattering from a partially

ionised collisional plasma that gives a Lorentzian spectral

function with width:

aT( 1 + ),)
A f= (1)

1"}"J,i1_

where A f is the spectral width, _ is a constant, T is the temperature, ), is the negative-ion to electron

number density ratio, rrli is the ionic mass and _, is the ion-neutral collision frequency (DOUGHERTY

and FARLEY, 1963; FUKUYAMA and KOFMAN, 1980). The simple dependence ofA f on T, ),, mi

and _ constitutes a difficult problem when interpreting measured data. More often than not there are

no independent measurements of the parameters on the right hand side of (1). The interpretation of

the data then depends on assumptions made and on atmospheric models.

90 [ , , , I ' _ r

q}_l__ _ 10 NOV 2156
80

70 I t J i, f t I t
--0 1 2 3 0 1 2 3 t,.

NEGATIVE ION TO ELECTRONRATIO

Fig. 3. Profiles of negative ion to electron density number.

Figure 2 shows a set of measured speclra (dotted curves) at consecutive altitudes alongside fitted

Lorentzians (solid curves) obtained by HALL et al. (1987). This type of analysis, with the help of
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neutral atmosphere models, has been at the heart of arguments leading to estimates of ), and rni.

Figure 3 shows profiles of ), reported by HALL et al. (1988), and Figure 4 shows time series of rai

at several altitudes reported by COLLIS et al. (1988).

In further developments, equation (1) has also served to make estimates of the Schmidt number,

Sc = u/D (HALL and BREKKE, 1988). An increase of the Schmidt number is associated with

a reduction of the electron diffusion coefficient, D, which has been interpreted by KELLEY et al.

(1987) as a causative explanation of the observation of strong coherent scattering--the PMSE--at

scale lengths otherwise not consistent with turbulent scattering. The estimates obtained by HALL

and BREKKE (1988) indicate an increase of the Schmidt number at altitudes where PMSE layers are

normally observed.

HOPPE and HANSEN (1988) and HALL et

al. (1987) have analysed also the Doppler shift

of the radar returns to infer vertical velocities at

mesospheric heights. They have found variations

of the velocity that indicate the presence of gravity

waves with periods mostly around 20 minutes. In

one interesting measurement (HALL et al., 1987),

the likely source of a gravity wave with period 38

min was identified to be the subsonic solar termi-

nator.

4. THE PMSE EXPERIMENTS

With the experience gained in a campaign in sum-

mer 1987 it was clear that the spectral signatures

1200
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Fig. 4. Time series of the mass of positive
heavy ions in the D region.

of the PMSE were very variable. The observations indicated that the bandwidths ranged at least be-

tween a fraction of a Hz and several tens of Hz. The structuring of the layers in altitude was also of

sub-kilometer dimension. These considerations implied that the use of GEN- 11 was not adequate,

as the frequency resolution, frequency bandwidth and altitude resolution of GEN-11 are 10.72 Hz,

::1:225 Hz and 1.05 km respectively. A predecessor to the more sophisticated experiments described

below was improvised during the 1987 campaign (ROTTGER et al., 1988). This experiment name-

coded MESO used a simple configuration with one transmitted pulse and a pulse-to-pulse correlation

technique (KOFMAN, et al., 1984).

Table II. PMSE Programs June-July 1988

Code Baud IPP Coh. Pts Dump Heights

_s _s Int. Time km
sec

PMSE2B 28 b Barker 7 5270 5 128 5 68.0--99.5

PMSE3A 32 b Compl. 2 2350 10 128 5 80.0-89.0

PMSE3B 64 b Compl 1 2985 10 64 2 80.0--89.15
PMSE3C 32 bCompl. 2 2475 8 96 2 80.0--92.3

FDII Uncoded 10 1813 28 192 5 80.0--95.0

FDI2 32 b Compl. 2 4902 6 64 2 80.0--89.0

S9II 32 b Compl. 2 4902 6 64 2 80.0-89.0

For the 1988 campaign we embarked in the development of experiments that employed comple-

mentary codes for the transmitted pulses and performed coherent integration of the received signals.

This task turned out to be non-trivial due to the internal architecture of the EISCAT correlator. The
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heart of the problem is that the output memory of the correlator is an only-write memory--all oper-

ations to the data must be done "on the fly" through a one way route.

We should state, however, that this configuration of the EISCAT system in the area of real time

signal processing is exceptionally powerful for applications to incoherent scattering, specially at E-

region altitudes and beyond where the radar signals are overspread--that is, the signal spectral widths

are larger than the radar repetition frequency--and the physical processes are often stationary within

minutes or more, A large library of experiment programs exists that usually matches most obser-

vational needs at these altitudes. This is not the case for middle and low atmosphere investigations

where the radar signals are usually underspread which pennits the use of complementary codes as

well as coherent integration. This type of signal processing is imperative for mesospheric applica-

tions since they are produced by sub-kilometer structures and often are non-stationary within time

scales of seconds and perhaps less. This implies that for the PMSE the integration time is more re-

lated to the stationarity of the signals rather than to the SNR as is normally the case for incoherent

scattering. However, under auroral conditions, incoherent scattering faces the same problems created

by non-stationarity.

A project is well under way to construct a special digital processor that will fill this gap (Postila,

1988). In the meantime, stimulated by the exciting prospects of having the oportunity to study a

physical phenomenom so little understood as the polar mesospheric summer echoes, we found un-

orthodox solutions to our difficulties to decode and simultaneously perform the coherent integration

of the sampled signals using the EISCAT correlator. Table 11 is a summary of the programs that were

developed for the summer campaign of 1988.

A

.iJ o _

.i °

A+ B= 32

0

Fig. 5. A 32-baud complementary set and ambiguity functions

The program that was used most was PMSE3C. Figure 5 shows the complementary coded pulses

and their range ambiguity functions that were employed in this program. Plotted on the left hand side

are the two complementary coded pulses. The -t- 1 on the ordinate axis denotes the two phases of the
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modulation--zero and 180 °. The baud length of 2 #s is equivalent to 300 metres range resolution.

The number of bauds is 32. Plotted on the right hand side of Figure 5 are the range ambiguity functions

of the two complementary codes denoted A and B. On the lower right comer is the resulting ambiguity

function after combining A and B. Note that the effective ambiguity function has no sidelobes.

PMSE3B is an interesting and useful program because with it we achieved a range resolution of

150 m with a complementary pair of length 64 and baud length of 1 _zs. The bandwidth required by

such code is near the limits of the present configuration of the VHF radar. We had only one successful

run of about 6 hours on July 6th 1988. Below we show some of the results obtained with PMSE3B
and PMSE3C.

The FDI and SDI programs were developed to carry out frequency and space interferometric

measurements respectively. Some of these experiments are described in this issue (FRANKE et al.,

1989; LA HOZ et al., 1989b).

There were also other programs not shown in Table II that had a more exploratory character.

STRAT, ST90P4 AND SOUND are modified versions of PMSE3C. STRAT, ST90P4 were employed

to make test measurements in the stratosphere, and SOUND was used to search for signatures of

acoustic sound waves. CC4D5 is a program similar to the PMSE set but it solves the problem of

using the correlator as a decoder/integrator in a different manner and was developed independently

(STURK et al., 1989). GEN-11 was also used during some periods, in particular during an event of

su'ong solar and geomagnetic activity that seemed to have a dramatic effect on the PMSE (ROTTGER

et al., 1989). SSLA is a program used to suport lidar observations of sodium layers over the norwegian

island of And0ya. More details and results from these experiments will be reported elsewhere.

In all these programs, the only operations executed in real time are the decoding and coherent

integration of the digital signals. Normally, the real time integration time is set to 2 seconds, upon

which the data are saved to magnetic tape. This meagre processing---originally forced upon us by the

limitations of the correlator--turned out to be of great value as we later discovered that the echoes

were highly non-stationary with time scales down to seconds or perhaps even less.

In addition to the standard on-line monitoring facilities----called RTGRAPH in EISCAT--that

allowed us to display the result memory of the correlator, we developed a package to display also

on-line the spectral functions and power profiles with or without post-integration.

The analysis of the data to investigate various scientific aspects is under way with the partici-

pation of several groups. As an illustration we show here in Figure 6 a grey-coded power map of

the experiment carried out on July 6th 1988 using the program PMSE3B. As mentioned before this

is the only experiment that had an altitude resolution of 150 metres. The data here have been post-

integrated for 30 seconds. The normalisation is done in a way that each altitude profile---or "time

slice"--is normalised to its own maximum value. The advantage is that the resulting image has a

striking high contrast--although at the expense of loosing the relative variations of the signals along

the time axis. This figure shows the remarkable variety of time and space structures present in these

echoes. A closer examination of the data shows that during most of the time during this experiment,

weak but unambiguous signal structures exist over the entire altitude window of the measurement.

The SNR spans more than 4 decades, from about -8 dB---probably determined by the sensitivity of

the radar--up to 37 dB in this experiment. Special care was taken throughout the campaign to cover

the large dynamic range of the signals and at the same time avoid saturation of the receivers and
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digital to analog converters. Nevertheless, there might be short periods during the experiments when

saturation has occurred.
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Fig. 7. Spectrogram of PMSE at 85.4 km

Figure 7 is a partial illustration of the variety of spectral forms that exist in the PMSE. Here

again the normalisation is of the same type as described above for the power map. The bottom panel,

however, shows the intensity of the signals in terms of the SNR. Of note here is the coexistence of

very narrow spectral forms, with widths of the order of the frequency resolution of the measurement

of 0,5 Hz., together with wide, multi-modal spectra that appear as two bursts between 13:04 and 13:20

UT. The latter spectra are as wide as ± 16 Hz, or equivalently ± 11 ms-1. The accompanying paper

in this issue by LA HOZ et al. (1989a) contains more illustrations of the dynamics of the PMSE.
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CURRENT STATUS AND RECENT DEVELOPMENTS OF THE

UNIVERSITY OFADELAIDE RADARS

R. A. Vincent and W. K. Hocking

Department of Physics and Mathematical Physics

University of Adelaide

GPO Box 498

Adelaide

Australia 5001

!, The Ad_laSde MF Ra4ar

The 2 MHz partial-reflection radar located at Buckland Park, 40 km north of

Adelaide (35"S, 138°E) has continued to operate on a continuous basis through

the period November 1983 to the end of 1988; the only down-time being due to

infrequent transmitter and computer failures. A spaced antenna system has

been operated with a real-time wind analysis to provide climatologies of mean

winds, tides and gravity waves (VINCENT et al., 1988, VINCENT and FRITTS,

1987). Since the beginning of 1985, these measurements have been combined

with Doppler measurements of spectral widths to produce a climatology of

turbulence dissipation rates (HOCKING, 1988>.

The radar also operates at the third-harmonic of 6 MHz, for which purpose it

has been used for D-region scattering investigations and for meteor studies

(ELFORD and OLSSON-STEEL, 1988). The 6 MHz transmitting array and transmitter

are currently being upgraded to provide a better angular discrimination_and

remove ambiguities caused by the grating lobes of the receiving array. The

higher system gain will be valuable in extending the studies of the dynamics

of the lower thermosphere and enable better multl-frequency comparisons at 2

and 6 MHz of D-region scattering processes.

2. The 54,1 MHz ST Radar,

This radar, also located at the Buckland Park field site, is being used for a

number of studies into the dynamics of the troposphere and lower stratosphere

(VINCENT et al., 1987). Current studies under way are spaced antenna wind

measurements with on-line data analysis of cold-fronts (in association with

the local Australian Bureau of Meteorology), and gravity waves. Continuous

observations spanning several weeks have been made and the accumulated data

is being used to provide a climatology of wave sources as well as is being

compared with wave activity in the mesosphere, obtained with the 2 MHz

system, in a search for possible wave coupling between the lower and upper

atmosphere. Doppler measurements of turbulence are also in progress, and it

is planned to make simultaneous comparisons between radar and balloon

measurements of turbulence.

3. The Mawson Radar

A 2 MHz partial-reflection radar has been in operation continuously since

June 1984 at Mawson Base in the Antarctic (67°S, 63°E) to study winds in the

70-110 km altitude region. Continuing studies have been made of the mean

circulation, planetary waves, tides, and gravity waves (PHILLIPS and VINCENT,

1989). Some emphasis has also been given to studies of the interaction

between the dynamics of the neutral atmosphere and the ionized atmosphere in

the 100-150 km region during geomagnetically active periods (PRICE, 1988).
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CHARACTERISTICSOFPROVENCERADAR

M.CROCHET

LSEET,Universit_deToulon,UA705CNRS
639,BddesArmaris,83100TOULON,FRANCE

ACCOMPLISHMENTS

The Provence Radar is a VHF, pulsed Doppler transportable radar

usually located near the city of Toulon. It has been integrated to

cooperative meteorological campaigns and/or ST radar networks :

- ALPEX 1982 in the RhSne Delta (South of France)

(BALSLEY et ai.,1983, ECKLUND et ai.,1985, CARTER et ai.,1985,1989)

- FRONTS 1984 and MESOGERS 1984 in Armagnac (South-west of France)

- FRONTS 1987 in Brittany (West of France)

(CROCHET et ai.,1989)

Comparisons have been (or will be) performed with other instruments :

- Balloons in-situ measurements in Armagnac 1984

(DALAUDIER et ai.,1985,1989)

Stellar scintillometer (SCIDAR - TOULON 1987)

(CROCHET et al., the same issue)

Balloons and SCIDAR (Aire-sur-Adour, 1989).

The Provence Radar has also been used for preliminary investigations in

VHF Radar Oceanography at the sea level by surface wave and from a cliff by

sky-wave in order to investigate different oceanographic parameters : sea

state, surface wind, surface currents, salinity and fronts (BROCHE et al.,

1987).

BRIEF DESCRIPTION

The Provence Radar has been operated successively at 48.85, 47.8,

45 MHz 2due to frequency allocation problems with = 50 Kw peak power and a
60x60 m antenna.

The capabilities have been recently upgraded.

A new preprocessor is driven by an INI computer with pulse generation

of i, 2, 4, 8, 16 _s pulse widths and related IPP for 2% duty cycle and

selection of the receiver adapted filter.

- A maximum of 48 gates can be sampled; with 8 bits conversion and a

maximum of 4095 coherent integrations.

Coding is available but not usually necessary due to the low duty cycle

of the present tube transmitter.

- Low altitude investigations have been performed at low power with a

totally passive duplexer and encouraging preliminary results have been

obtained down to 500 m (CROCHET and BOURDIER, same issue).
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STATUS AND PLANS FOR THE POHNPEI, F.S.M. (7°N, 157°E) ST RADAR

W.L. Ecklund, K.S. Gage, D.A. Carter, and B.B. Balsley

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, Colorado 80303

The Pohnpei ST radar has been operated in a vertical only mode since 1984.

The radar operates at 50 MHz and has a 100m x 100m phased array. At the

present time the radar hardware and data processing systems are located in the

communications building about 2 km from the town of Kolonia. The antenna is

located in a field 450 meters from the communications building. The long run

of cable has led to two problems. The radar signals are attenuated and the

cable itself is vulnerable. The antenna was cut during the past year during

plowing operations. The radar was restored to operating condition during a

site visit in early October 1988.

Since commencing operation in 1984 much valuable data has been collected

on vertical motions during convective storms. Upward vertical motions in

excess of I0 ms * have been observed during the passage of convective "hot

towers" over the Pohnpei site. Average vertical motions have been studied

extensively at Pohnpei by using rainfall and cloud cover observations from the

Pohnpei weather station in Kolonia. Results of this analysis have been pub-

lished (BALSLEY etal. 1988). They confirm that convective storms are largely

responsible for the upward vertical motions observed in the tropics and that

under relatively clear conditions subsidence prevails. Another study is under-

way linking the magnitude of vertical velocity variability to the occurrence of

lee waves and the detailed profile of tropospheric horizontal winds (BALSLEY

AND CARTER, 1989).

In the near future we plan to modify the Pohnpei radar so that horizontal

winds can be measured. First, a small building will be constructed next to the

existing antenna and the radar hardware and data processing systems will be

moved to this location. Then a second polarization will be added to the an-

tenna and a five-beam system will be used. The five-beam system will provide

redundant wind information and permit us to evaluate the degree to which winds

observed at Pohnpei are compromised by mountain lee waves. Because of the

winds available from the balloon soundings at Pohnpei we will be able to

evaluate whether wind profiler data is affected more or less than balloon data

by the presence of lee waves.
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PROGRESS REPORT OF THE CHUNG-LI RADAR FACILITY

A. J. Chen and S.-Y. Su

Center for Space and Remote Sensing Research
National Central University

Chung-Li, Taiwan, ROC

Since the first report on the Chtmg-Li VHF radar specifications (BROSNAHAN et al.,
1983) and the ftrst operation and results reported at the workshop held in Aquadilla, Puerto
Rico, October 21-25, 1985 (CHAO et al., 1986), several significant advances have been made
on the radar facility and observational techniques. An updated summary of the Chung-Li radar
characteristics is listed in Table 1.

A major system overhaul was carried out in the winter of 1987-1988. The
improvements on the radar facility are listed in the following: First of all, the fastest data
sampling rate for 40 range gate data is 1 data point per channel every 0.064 sec, an advance
from 1 data point per channel every 0.2 sec. This is adequate for observing fast moving events
and helpful in studying the echo mechanism. Secondly, a 16-bit complementary code system
has been implemented. This will increase the observation height yet retain the maximum height
resolution of 150 m. A fwst test run result of using the coded data is shown in Figure 1,
adopted from a paper by CHU and HUANG (1988). Although the general agreement of wind
velocity and direction is good among the coded, uncoded and rawinsonde data, more tests are
still needed to perfect the decoding technique. Thirdly, the optional dc removal is also
implemented in the system. This will improve the accuracy of the wind field measurements
and echo power determination. Furthermore, it enables us to apply the observational
techniques such as SAD and interferometry methods correctly.

As was known, the Chung-Li radar was designed m operate in dual mode, DBS and
SAD modes. A simultaneous observation using the DBS and SAD methods has been analyzed
by FU (1988). We show in Figure 2 one of his results. Notice that in the figure the results
from the DBS, SAD and rawinsonde data are quite in agreement in wind velocity and direction.
However, it should be noted that the wind velocity from the SAD method is the "apparent
velocity" obtained from auto- and cross-correlation analyses. This is not the "true velocity"
from the full correlation analysis (BRIGGS, 1984), in which the random changes of the
scattering pattern have been removed. Apparently, other effects such as the broad radar beam
(7.4 ° ) and the vertical wind correction (under certain weather conditions) need to be further
investigated for SAD observations with the Chung-Li radar in order to understand the
discrepancy.

Finally, the Chung-Li radar has observed quite a few wave events because of its
proximity to the Taiwan central mountain range and frequent severe weather changes such as
the approach of typhoons and cold fronts. Figure 3 shows a wave event that seems to be
related to the so-called "cat eye" phenomenon developed from K-H instability of wind shear
observed at the same height. The out-of-phase of the vertical wind oscillations between layers
with Z > 7 km and layers with Z < 7 km around 17:52 of June 9, 1986, in the figure can be
related to the wind shear observed at Z = 7 krn shown in Figure 4. Detailed analysis of this
event has been presented by FU (1988).

In conclusion, the Chung-Li radar facility offers a unique opportunity to observe wave
phenomena related to mountain waves, typhoons, and cold fronts. More extended
observations can certainly be made in order to understand the wave phenomena in subtropical
regions. Furthermore, some additional hardware acquisition,,; such as MEDAC, RASS, and
lidar are planned in the near future for the Chung-Li radar facility to increase its capability in
studying the middle atmospheric phenomena.
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Table 1. Characteristics of the Chung-Li VHF Radar,

Location
Frequency
Antenna Array

configuration
elements
area
gain

beam directions

HPBW

Transmitter

Pulse Width

Duty Cycle
Pulse Coding
Receiver

Bessel filter
Computer
Data Resolution

Max Height
Operating Mode

24°58'N, 121°11'E
52 MHz

3 modules
(8 x 8) 4-element Yagi/module
1600 m2/module
28 dB (one module)
33 dB (3 modules)
vertical; 17 ° off zenith toward east, west, north, and south
5 discrete directions every module
7.4 ° (one module)
4° - 5° (3 modules)
3 coherent transmitters, max power 60 kW/transmitter

I - 16 _ts

< 2%
16-bit complementary codes; 2, 4, 8, or 16 bits
Monostatic
Bandwidth 1 MHz, 0.5 MHz, 0.25 MHz, or 0.125 MHz
CODATA computer

AH > 150 rn

At _ 0.064 s
24 km (normal operation)
Dual mode (DBS and SAD)
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Figure l. First results of Chung-Li radar coded data in comparison with the uncodcd data

taken consecutively and with the rawinsond¢ data taken at 25 km off the radar site and at an
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Figure 3. Observation of a possible "cat eye" phenomenon by the Chung-Li radar at 17:52 of
June 19, 1986, displayed by the out-of-phase oscillation of the vertical wind component.
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THE CHRISTMAS ISLAND ST RADAR (2°N, 157°W)

K.S. Gage, B,B. Balsley, D.A. Carter, W.L, Ecklund, and J.R. McAfee

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, Colorado 80303

S.K. Avery

Cooperative Institute for Research in the Environmental Sciences

University of Colorado

Boulder, Colorado 80309

The wind-profillng Doppler radar at Christmas Island has been in routine

operation since April 1988. The profiler is a 50 MHz VHF Doppler radar with a

lOOm x lOOm phased array antenna. The construction phase was completed in 1985

but the early observations were compromised by the presence of sea clutter.

The sea clutter was mostly eliminated by modifications to the antenna which

were completed in early 1986. A detailed analysis of the sea echoes can be

found in BALSLEY et al. (1987), and the antenna modifications are described in

BALSLEY et al. (1988).

The Christmas Island wind profiler is supported by NOAA's TOGA Program

Office as part of its concerted effort to improw_ upper-air wind observations

over the tropical Pacific. The TOGA program is striving to understand the

dynamics of low frequency climate variability associated with the E1 Nimo and

Southern Oscillation. The Christmas Island radar is located in a data-sparse

region in the central Pacific. Compared to the western Pacific, Christmas

Island weather is generally fair except during ENSO events when convection

moves eastward across the equatorial Pacific.

Wind observations from Christmas Island have routinely been transmitted

via GOES Satellite and incorporated into the Global Telecommunication System

(GTS) since early 1987. This is the first wind profiler data to be dissemi-

nated globally in near real-time and to be used in operational analysis and

forecast products by the National Meteorological Center (NMC) and the European

Center for Medium Range Weather Forecasts (ECMWF). We have made extensive

comparisons between the NMC and ECMWF analyses interpolated to Christmas Island

(GAGE et al, 1988).

During the past summer a meteor echo detection and collection system

(MEDAC) (WANG et al. 1988) was added to the ChrisT_mas Island radar. The addi-

tion of meteor echo observations via MEDAC will enable mesospheric and lower

thermospheric observations to be made at Christmas Island simultaneously with

lower atmospheric observations, In the future we plan to incorporate a UHF

boundary layer radar (ECKLUND et al. 1988) into the Christmas Island system and

to cooperate with R.A. Vincent of the University of Adelaide, Australia, to

establish an HF SAD radar at Christmas Island.
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THESTATUSOFTHEFLATLANDRADARANDRECENTSTUDIES

J.L. Green,T.E. VanZandt,K.S.Gage,J.M.Warnock,W.L.Clark
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The Flatland radar, a VHF (49.8 MHz) ST radar located about 8 km west of

the Champaign-Urbana, Illinois airport, at 40 05 ° N, 88.4 ° W, 212 m MSL, was

constructed and is operated by the Aeronomy Laboratory of the National Oceanic

and Atmospheric Administration (GREEN et al., 1988). It is sited in a large

region of very flat terrain to avoid orographJc influences. The antenna is a

60m × 60m coaxial-collinear array that is steerable in 2 ° steps in the N-S and

E-W vertical planes. The vertical beam is carefully adjusted to be < 0.02 °

from the vertical in order to minimize contamination of vertical velocity

measurements by horizontal winds.

From March, 1987 through April, 1988, the radar measured the vertical wind

velocity every 2-1/2 min. These data have been used to study frequency spectra

of vertical velocity (VANZANDT et al., 1988) and the vertical velocity and

reflectivity structure during tropopause folding events (NASTROM et al., 1988)o

During May-July, 1988, comparisons were made with a collocated boundary layer

radar (ECKLUND et al., 1988) and with the Chill Radar (MUELLER AND SILHA,

1978). During June, 1988, C 2 was studied by comparing simultaneous data from

the Flatland radar, the boundary layer radar, _hermosonde, an isoplanometer, a

r 0 device, and the Aeronomy Laboratory model for C _ (WARNOCK et al., 1988).

During August, 1988, simultaneous observations wer_ made with the Urbana radar

and Flatland radar (DESTER et al., 1988).

At present the Flatland radar is being operated in a five antenna beam

configuration in order to study the vertical flux of horizontal momentum by

means of gravity waves. This data will also be used in a study of winter

storms.

The Flatland radar is partially funded by the National Science Foundation

Grant ATM-852513.
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ST RADAR: FIRST STEP TO INDLetN MST RADAR

B. K. Sarkar and A. Agarwal
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Bombay 400 076, India

INTRODUCTION

ST (stratospheric/tropospheric) radar works over heights extending up to the lower
stratosphere. A typical height covered by ST radar is somewhere between 20 - 25 kin.

ST radars are most useful for studying jetstrearn dynamics, tropopause heights, etc.
They can be used to measure wind velocity, all three vectors of wind velocity, variation of
clear air turbulence near and above thunderstorms, etc.

ST mode operation is an important milestone in the development of MST radar. ST
radar is smaller in size and hence it is easier to construct to prove the concept of MST radar.
ST radar should be an integral part (wholly or partially) of the final MST radar so that
minimum changes will be needed to construct an MST radar from the ST radar configuration.

ST mode configuration of the Indian MST radar is proposed here, keeping in mind
minimum changes from the final MST radar configuration, thus reducing the extra costs and
time.

CONFIGURATION FOR ST MODE OPERATION

The Indian MST radar is a phased array radar consisting of plarmar array of 32 x 32 (=
1024) dual Yagi antennas. There are 32 transmitters. Each transmitter feeds a row of 32 Yagi
antennas with the help of directional couplers. Transmitter power and directional coupler
outputs are tapered to get a Taylor distribution, resulting in 20 dB sidelobe for the plannar
array. The beam is tilted by the low power phase shifters associated with the exciters of the
transmitters.

It is proposed not to rearrange or disturb the feeding structure of the MST radar. For
ST mode operation, 16 x 16 dual Yagi antennas (instead of 32 x 32 antennas as in the MST
radar) will be excited feeding power from 16 transmitters (instead of 32 transmitters as in MST
radar) as shown in Figures 1 and 2. Each transmitter feeds 16 antennas. Since 16 x 16
antennas are excited instead of 32 x 32 antennas, the power left out after feeding 16 antennas in
each row is absorbed in matched terminations. The 16 x 16 array of the ST mode will radiate
70% of the total transrrfitter power. The remaining 30% is absorbed in matched terminations.
The sidelobe level of the 16 x 16 array ST radar will be 13.1 dB and 3 dB beam width will be
6°"

Each transmitter of the MST radar will consist of the exciter, solid-state amplifier, 2
stages of triode driver amplifiers and finally high power amplifier. In ST mode operation,
transmitters consisting of exciters, low power solid-state amplifiers and triode driver amplifiers
will be used. It is proposed to use 12 nos. of 6 kW (peak) and 4 nos. of 4.5 kW (peak)
transmitters resulting peak power aperture product of 2.244 x I08 Wm 2-

Table 1 gives transmitter power levels, beam widths, sidelobe levels and peak power
aperture products for arrays of different sizes.
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ADVANTAGE OF THE PROPOSED ST RADAR

There exists flexibility of adding transmitters one by one and increasing the elements
symmetrically so that beam widths are equal. By adding four more transmitters, it will give
beam widths of 4.8 ° x 4.8 °. Data can be collected with increasing antenna aperture and
increasing transmitted power. Testing of smaller arrays of ST radar with all capabilities will
give confidence to scientists and engineers. Since the radar will be built by adding elements
stage by stage from the ST configuration, any problem in the radar during the developmental
period can also be rectified easily. In the proposed configuration of ST radar, once antennas,
feeder network, transmitters, etc. are installed in the antenna field, they remain unperturbed for
MST mode operation. The only additional work involved is to make 64 matched terminations.

Table IIcompares the parameters of the proposed Indian ST radar with the existing ST
radars of USA and Australia.

Table 1

Parameters of Indian ST Radar With
Increasing Elements and Transmitted Power

No. of Sidelobe 3 dB beam- Tx Peak power
elements level width power level No aperture product

dB deg kW (Wm 2)

16x 16 13.1 6 6 12 2.244 x 108
4.5 4

20 x 20 14.75 4.8

24 x 24 16.0 4

32 x 32 19.6 3

6 12 4.85 x 108
4.5 4
3.5 4

6 12 8.66 x 108
4.5 4
3.5 4

6 12 19.19 x 108
4.5 4
3.5 4
2.7 4
1.8 4
1.1 4
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Table H

Comparison of Existing ST Radars
With The Proposed Indian ST Radar

EXISTING ST RADARS Planned ST
Radar

SUBSYSTEMS Plarteville Sterling Sunset Buckland Th'upati
USA USA USA Park

AUSTRALIA INDIA

I. TRANSMITI'ER

Frequency (MHz) 49.92 49.80 40.475 54.1 53.0
Total peak power (kVO 15 30 50 40 90
Peak power apert-
ureproduct(Wm 2) 1.5x108 0,75x108 1.1x108 3,2x108 2.24x108
Duty cycle (%) 1.7 2.0 2.5 0.7 2,5
Average power 133 W 400 W 1 kW 200 W 2.25 kW

Pulse width min.(_ts) 4 4 1 7 I
Average power
aperture product 2.66 x 105 10.0 x 105 22.0 x 105 15.0 x 105 79.47 x 105
tWrn2)

II. ANTENNA

Type Coax. dipoles Co-Co Co-Co Co-Co Yagi
Total no. of
dipoles - 16 x 16
Physical
aperature (m 2) 2000 2500 2200 7500 3532
Beam width 5_ 5' 4.8 ° 3.2 ° 6_
Beam direction
from Zenith 15°(2) 15°(2) 60* 15"(1) :h20°
Mode PAD PAC PAC PAC,PAY PAY

PAD - Phased Array Dipoles
PAC - Phased Array Co-axial Collinear
PAY - Phased Array Yagis
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PROGRESS IN THE DESIGN AND DEVELOPMENT OF THE INDIAN MST RADAR

G. Viswanathan

MST Radar Project
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Bangalore 560 058, India

The system level specifications of the Indian MST radar were brought out in MAP
Handbook Vol. 20, dated June 1986. The present status of progress in the design and
development of the Indian MST radar is summarized below:

A conuact was awarded in January 1987 to the Society for Applied Microwave Electronics
Engineering and Research (SAMEER), Bombay, an autonomous Society under the Department of
Electronics, Government of India for the design and development of the Indian MST radar.

A Preliminary Design Review was organized to decide on the design approach to the
system as well as the individual subsystems of the radar. The following major decisions emerged
during the PDR.

- It was decided to use crossed three element Yagi fi_r the antenna array instead of the
coaxial collinear system originally contemplated. The antenna will now consist of 1024 such Yagi
elements.

- Antenna illumination using a modified Taylor series was decided to provide better control
over sidelobe levels.

- While the peak power of 2.5 MW and the average power of 60 kW for the system was
retained, the configuration of the transmitter was changed to use 32 transmitter units varying in
power output from 120 kW peak to approximately 20 kW peak to enable the Taylor series
illumination.

- The concept of using a semiactive array instead of a totally passive array was finalized,
resulting in a moderate level of flexibility.

- The configuration of the data acquisition and real-time processing system was modified to
have a dedicated data acquisition and preprocessing unit followed by a general purpose Super
Microcomputer (MASS COMP 5600) based on 68030 processor, coupled with a vector accelerator
and standard peripherals.

A site was chosen for the installation of the Indian MST radar facility at Gadanki village
(Lat 13°27'34"N, Long 79°10'34"E, MSL 190 mtrs.) near Tirupati, in the state of Andhra
Pradesh. A noise survey was conducted to characterize the possible radio noise interference.
Exhaustive measurements are planned for characterizing cosmic noise levels at the site. The
necessary coordination with the other user agencies for the frequency allocation and site clearance
is completed under the aegis of the Wireless Planning Committee, Ministry of Communication of
the Government of India. Frequency allocation is made at the carrier frequency of 53 MHz with
operating bandwidth of 2 MHz.

Engineering design for the buildings and infrastructure for establishing the facility was
completed and tendering of the civil and electrical works is in progress. The design and
development effort for the various subsystems of the MST radar consisted of:

- Validation of the design by the development of a laboratory prototype.

- Development of an engineering prototype to meet the performance requirements as well as
the environmental specifications.
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- Subcontracting the production of units required in large numbers to industries after
detailed vendor evaluation.

- Inhouse development of critical subsystems as well as software packages.

The present status of the development has crossed the state of validating the design
approach by way of laboratory prototypes and vendor evaluation in the case of the antenna units.

The In'st phase of the commissioning of the system is expected to be over by the middle of

1990. At this time the facility will be operated in the ST mode while continuing to augment the

system to reach the full-fledged MST level in terms of power aperture product. Scientists from the
different National Laboratories plan to extract meaningful science output during the ST mode

operation.
R
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THE ST RADAR UNDER CONSTRUCTION AT PIURA, PERU (5°S, 81°W)

B.B. Balsley, W.L. Ecklund, D.A. Carter, and K.S. Gage
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Boulder, Colorado 80303

R. Mugica, A. Mabres, and R. Rodriguez

Universite de Piura
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S.K. Avery and E.J. Violette

Cooperative Institute for Research in the Environmental Sciences

University of Colorado

Boulder, Colorado 80309

R.F. Woodman

Instituto Geofisico del Peru

Lima, iO0 Peru 00612

The Piura ST radar currently under construction at the Universite de Piura

in Piura, Peru will be a 50 MHz VHF system. This radar will form the east-

ernmost facility in the proposed trans-Pacific network of ST radars that will

eventually span the equatorial Pacific. Support for the construction of the

Piura radar is being furnished by the U.S. National Science Foundation. The ST

radar at Piura is part of a cooperative research program involving NOAA's

Aeronomy Laboratory and the University of Colorado in the United States, and

the Universite de Piura and the Instituto Geofisica del Peru in Peru. The

radar is being constructed on the campus of the Universite de Piura.

A container filled with antenna cables and radar hardware was shipped from

Alaska during the past few months. Site preparations are now underway and the

antenna construction will begin about the first of the year. A building will

be constructed next to the antenna site to house the radar equipment. A diesel

generator has been purchased to provide a continuous source of power to the

radar. The first phase of construction will be completed hy mid-1989 and the

radar will be operated for the first year in a vertical-only mode. During 1990

the radar will be modified so that horizontal as well as vertical velocities

can be measured.
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THE INSU/METEO BIFREQUENCY S.T. RADAR
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(3) L.S.E.E.T., Toulon, France
(4) I.N.S.U., Saint Maur, France

A. Desautez 4,

In 1984, two networks of ST radars were proposed, one devoted to research (INSU network), the
other to meteorological operations (DMN Network). In order to go deeper into these two projects,
the different institutions involved have coordinated their scientific, technical and financial
resources for a better efficiency. The first stage began in 1985 and was the realization of a
prototype fulfilling the requirements of both atmospheric research and operational meteorology.
Consequently, a bifrequency UHF/VHF radar has been built : the UHF radar covers the lowest
altitudes from several hundred meters up to 7 km and the VHF radar the highest ones from 1.5 km
up to 20km. As a matter of fact, we build two VHF radars working at 72.5 MHz and 45 MHz
respectively and a radar at 961 MHz. Any of the two VHF radars can be included into the
bifrequency radar.
The second stage was a long run in a multi-instrument environment from October 1987 to January
1988 during the FRONTS 87 experiment ( Clough, 1987). A network of three S.T. radars, 100
km apart, was set in order to study small and meso scales circulations. Two of them, the
bifrequency (961/45MHz) and the 72.5 MHz radars, came from this prototype and were
continuously operating for the first time. The third one was the "PROVENCE" radar from the
LSEET.

Characterisdc_ of th_ radars

Figure 1 is a schema of the bifrequency radar system. The UHF and VHF radars are driven by the
same computer and work independently and simultaneously according to their own measurement
sequences. Tables 1 and 2 give the characteristics of the different radars.
Both of them use solid state amplifiers, developped for this purpose. During the transmission and
reception, the system direct component is eliminated by a 180 ° flip from pulse-to-pulse and
subsequent coherent integration. The VHF transmitted pulse may be coded using a 10-baud
complementary code and decoded after coherent integrations in the numerical device. The 256
point power spectra are computed on-line using a TMS320, incoherently added and recorded on a
magnetic tape with a time rate as fast as 20s. Spectrum plots are available in real time.
Different running modes of the radar are memorized and can be activated using the computer
function keys. A mode is constituted by the working parameters of the radars under operation. For
each radar, the sequence is defined by the alternance of the directions of observation, and of coded
or non coded pulse in case of VHF radar. Any alternance is possible. The number of coherent
integrations is a characteristic of each term of the sequence and the number of incoherent
integration of each radar.

Preliminary_ FRONTS 87 results

The UHF/VHF(45 MHz) and the VHF(72.5 MHz) radars worked continuously during the 4
month FRONTS 87 experiment in a satisfactory way and thus pointed out their reliability.
Afterwards, some optimization have been carried out.
The VHF radar had worked continuously with a duty cycle of 16% without any problems during
and after the experience.
In order to take advantage of this large set of S.T. radar data, a database has been implemented. So
far, it contains the informations relative to all the experiments carried out by the INSU/METEO
prototype; it will be a major help to make case and statistical studies.
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TABLE 1. UHF - Radar Characteristics and Operating Parameters

Radar Characteristics

Frequency (MHz) 961
Bandwidth (MHz) 1
Peak Power (kW) 4
Average Power (W) 80

Pulse Width (Its) 1

Pulse Repetition Period (Its) 50
Duty cycle (%) 2
Antenna, Parabola diameter (m) 4.60
Beamwidth 4 o
Antenna Pointing Zenith, 15° off-Zenith to North and East

Typical Operating Parameters during FRONTS 87

Time Domain Average 64
Spectral Resolution (ms -1) 0.19
Maximum Radial Velocity (ms -l) + 24.4
Height Resolution (m)
First Height (m)
Number of Gates
Time Resolution (s) 0.82
Spectral Average 50

150
260
47

256
0.048

+6.1

3.28
100

TABLE 2. VHF - Radar Characteristics and Operating Parameters

Radar Characteristics

Frequency (MHz)
Antenna Type
Antenna Area
Beamwidth
Peak Power (kW)
Pulse Repetition Period (Its)
Pulse Width (Its)
Average Power (W)
Duty Cycle (%)
Height Resolution (m)
Code Type

72,5 (% = 4.13 m) and 45 (_. = 6.7 m)
array of CQlinear COaxial dipoles
40 x 40m z 70 x 70 m 2

5.6 °
5

156.25 (6400 Hz)
25 (coded) 2.5 (non coded) 15 (non coded)
800 8 0 480

16 1.6 9.6
375 375 2250

10 baud Complementary Codes

Typical Operating Parameters during FRONTS 87

Time Domain Average
45 MHz Maximum Radial Velocity (m/s)
45 MHz Spectral Resolution (m/s)
Time Resolution (s)
Spectral Average

256 1024
-l- 41.7 + 10.4
0.2 0.05
10.24 41.96
2 6
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The comparisons between ST radar and radiosonde data show a global good agreement but it
must be examine in details especially during front passage.For one of the major events, the 12th of
January 1988, preliminary radar results point out the fine structure of the frontal surface with a
low level jet ahead the front and at upper altitude tropopause foldings.

Future Develotmement

The INSU/METEO radar was built as a prototype of the Research Network ST radars. This goal
has been reached as this network was accepted by the French scientific Community in september
1987. Two other bifrequency radars will be built as a copy of the prototype in the next three years.
As these radars are transportable, they could be set into a network during multi-instrument
campaigns as ALPEX, FRONTS 84 and 87 or in fixed locations, close by the laboratories, for
routine experiments.

REFERENCES

Clough S.A.,Meteor. Mag., 116, 32-42, 1987.

Addresses:
CNRM/EERM, 42 Avenue Gustave Coriolis, 31057 Toulouse Cedex, France
CRPE, 4 Avenue de Neptune, 94107 Saint Maur des Fossts Cedex, France
INSU, 4 Avenue de Neptune, 94107 Saint Maur des Fossts Cedex, France
LSEET, 639 Boulevard des Armaris, 83100 Toulon, France
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VHF AND UHF RADARS BEING DEVELOPED IN THE BELLING AREA, CHINA

Da-renLu

InstituteofAtmosphericPhysics
A_a Sinica

Beijing10001I,China

There is one VHF radar and one UHF radar being developed in the Beijing area. The
VHF Doppler radar will be devoted to both middle atmosphere and mesoscale nowcasting
research. The UHF radar is mainly devoted to mesoscale meteorology and, in particular,
nowcasting operation. The Institute of Atmospheric Physics, Chinese Academy of Sciences is
responsible for the development and operation of the VHF radar and the Academy of
Meteorological Science, State Meteorological Administration of China for the UHF radar.
These two radars will be located in the Beijing area. The distance between them is about 60
kin. The main parameters of these two radars are as follows:

Beijing VHF (CASfl_AP) Beijing UHF (SMA/AMS)

Location

Antenna

Frequency

Transmitter

Pulse length
PRR

Data acquisition
and processing

Height range

Expected
operating time

-40°N, ll7°E
Xianghe county, Hebei Province
108 x 108 m 2
36 x 36 Yagi elements
2 polarizations
5 bit phase-shifter

78 MHz

Distributed 36 sets
Total Pt 640 kW-900 kW
Total Pmax 28 kW
(depend on pulse length and
pulse repetition rate)

2-10 Its, variable
2,500 Hz

1 MHz A/D converter
8 bit
PC-386 (to be determined)
FFT Hardware

64-128

End of 1990

40°N, 116°E
Daxing county, Beijing

108 Yagi elements

3 beams

365 MHz

1 set
Pt - 30 kW

1-9 Its, variable
-5-20 kHz

1 MHz A/D converter
8 bit
PC-AT
FFT Hardware

Middle of 1989
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A PROPOSED ST RADAR FOR BIAK, INDONESIA (I°S, 136°E)

K.S. Gage, W.L. Eeklund, and B.B. Balsley

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, Colorado 80303

J. Soegijo, M. Pardede, and S.M. Notosuyidno

LAPAN

Aerospace Research Center

Bandung, Indonesia

The island of Biak is located just south of uhe equator at the eastern end

of the "maritime continent" of Indonesia. The town of Biak is at the southern

end of the island, which is located north of the mainland of Irian Jaya. Biak

is served by a modern airport. Air Garuda maintains regularly scheduled

flights connecting Biak with Los Angeles, Honolulu, Denpasar, Jakarta, and Hong

Kong.

The proposed Biak radar will be constructed as part of a joint Indonesian

and U.S. cooperative research program, and the Biak radar will form an integral

part of the network of equatorial radars being built by the Aeronomy Laboratory

with the support of the U.S. National Science Foundation. The radar will be

constructed at a field station maintained and operated by the Indonesian

National Institute of Aeronautics and Space (17_PAN). The radar site is located

a short distance from the town of Biak and the civilian airport with good

access to a reliable power source. The LAPAN field station is about i km

inland on a plateau about lO0 m above sea level. The LAPAN station maintains a

satellite ground station and an ionosonde facility.

The proposed radar will be very similar to the Christmas Island radar. It

will operate at 50 MHz and will have a 100m × 100m coaxial-collinear antenna.

A detailed description of the Christmas Island radar antenna is given by

ECKLUND, et al. (1985). It is currently anticipated that construction will

begin in the middle of 1989 and be completed in 1990.

REFERENCES

Ecklund, W.L., D.A. Carter, and B.B. Balsley (1985).

array, Handboo_ for MAP, Vol. 20, 379-380.

The NOAA TOGA antenna
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DEVELOPMENT OF THE UK RADAR SYSTEM

Lance Thomas

Department of Physics
University College of Wales

Aberystwyth, Dyfed, UK

A radar system operating at 46.5 MHz is being developed jointly by the Rutherford
Appleton Laboratory of the Science and Engineering Research Council (SERC) and the
University College of Wales at Aberystwyth. Its background as a national facility funded by
the SERC, together with the main design features, have been described by A. J. Hall in a
previous report, HANDBOOK FOR MAP, VOL. 9, 1983, p. 387.

The radar site is located near Aberystwyth, covers an area of about 120 m x 120 m, and
has been excavated to provide a surface flat to about 10 cm. To date, an antenna array
comprised of 64 4-element Yagis, covering an area of about 2000 m 2, has been set up and two
Tycho transmitter modules and a receiver, a Hewlett Packard computer system and associated
electronics are housed in a trailer at the site. This configuration has been used to test radio
interference levels and operation procedures, the mean power aperture of 5.106 Wm 2
providing wind measurements up to heights near the tropopause and vertical incidence signal
strength measurements for heights up to 20 km. In preparation for the extension of the
system, a 50 ft x 22 ft technical block has been constructed to which the pre-integrator unit
currently under test and the PDP 1 lf'/3 computer to be used for radar control and real-time data
analysis will be transferred early in 1989. The extension of the antenna array to a total of 400
Yagis occupying an area of 12,000 m 2 is in hand and it is hoped to increase the number of
transmitter modules to five by the autumn of 1989. The enlarged mean power aperture of 7.5
x 107 Wm 2 will be suitable for MST operation.
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HARDWARE DESIGN FOR MST, ST AND LOWER TROPOSPHERE/BOUNDARY LAYER RADARS

W. L. Ecklund

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, Colorado 80303

OVERVIEW

All of the present day atmospheric profiling radars have their roots in

early high-powered ionospheric and meteorological radar designs. Short-term

studies of the atmosphere using these radars demonstrated the great potential

of atmospheric profiling. These early radars operated over a wide range of

frequencies from 50 MHz up to 3000 MBz, but from a hardware point of view all

used tube transmitters and parabolic reflector (dish) antennas with the excep-

tion of Jicamarca which used a coaxial-collinear antenna array.

The dedicated atmospheric profilers that have been developed over the last

15 years span a large size range in terms of their power-aperture product.

Table 1 gives an approximate range of power-aperture product and operating

frequency for different sized radars classified according to the atmospheric

levels which they can observe. MST stands for mesosphere, stratosphere, tropo-

sphere; LT indicates lower troposphere and BL denotes the boundary layer. We

note from this table that all MST radars operate in the lower VHF range but

that ST radars operate up to 404 MHz and that the lower troposphere�boundary

layer radars operate up to 3000 MHz. We also note that the sensitivity of the

present-day atmospheric profilers expressed in terms of power-aperture product

ranges over 8 orders of magnitude.

Table 2 is a partial list of present day MST, ST, T and LT radars.

Although the table may have some errors or omissions, its purpose is to show

the range of hardware designs (types of antennas and transmitters) used with

current atmospheric profilers. Starting with the MST category, we see that all

of the MST radars use Yagi antennas with the exception of Poker Flat. This can

he explained primarily by the requirement for most MST radars to have flexible

antenna beam steering. The coaxial-collinear (co-co) antenna limits beam

steering to the plane perpendicular to the antenna elements, but has the ad-

vantage that a number of elements are driven from a single feed point, reducing

the cost and complexity of feed networks. The MST transmitters range from a

single large tube (greater than i00 kW peak power) at SOUSY to transmitters

distributed throughout the antenna array using medium power (50 kW peak power)

tubes at Poker Flat to distributed solid-state transmitters at the MU radar.

The llst for ST radars shows that the coaxial-collinear antenna is most

commonly used for this class of radar. This is probably due to the fact that a

number of these radars operate as routine wind profilers with only 3 fixed

beams. For this simplified operation, the co-co antennas are adequate and have

the advantage of simplified feed networks mentioned above. It is interesting

to note that the new commercial ST radars operating at 404 MHz also use co-co

antennas. Although most of the ST radars use nominal 50 kW tube-type transmit-

ters, there is a trend toward using solid-state transmitters in the latest

designs. The smaller radars designed to cover the troposphere (T) and lower

troposphere (LT) typically operate at 404 M/_z and above and use a variety of

antennas. In addition, the smaller transmitters used with these radars are

almost all solid-state.
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Tablei. Classificationof AtmosphericProfilers.

CLASS

L

MST (ST)

ST (T)

T (LT)

L

LT (BL)

P x ^ (w-m_)

N i07 to I0q_"

0q_-'I0 to I

2
,_,I0 to 105

I0 to I02

FREQUENCY (MHz)

41 to 55

41 to 404

404 to 961

i •

915 to 3ooo
I
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Table 2. Partial List of Atmospheric Radars.

MST (ST)

(l, fflz) ANTENNA _TT_t

SOUSY 53 YAOI LARGE 11mE

41 gIPm.E LARGE TImE

P_R P_.AT 50 CO-CO gIST. M]_. TUBES

_3 47 YAI]I gIST. SQLIg- STATE

..................................................................

IROIA 53 YAGI CO_. M_. TL_ES

EQ, 0BS, 47 YAGI DIST. Srn.Tn-STATE

T_ 47 YAGI CQ]'_. _]_, TUBES

ST (T)

$1.['_ ET 41 C0-CO _E '[1._E

l:n..,ATT_E 50 C0-C0 MEg, Tt_E

COI,QRAD0 NET 50 C0-C0 H]_. Tt_E

H:LANCE (LSEET) 45 C0-C0 },ff_. TL_E

PEt,_ STATE NET 50 C0-C0 )_E_. TUBE

C]ff_-LI 52 YAGI MED. T_E

/O3]_Lm E 54 CO- CO/Y)_I CQ_B , S_Tn- STATE

TB/_IC/_ NET 50 CO-CO ]_EO, TUBE

PLATT_'tq]_E 404 YACI SfH.]_- STATE/TUBE

R.JLTI,_IO 50 CO- CO ME]]. "I'Lg]E

C_I.,M., 404 C0-C0 KI_. "['[JOBE/ SQI..,']]]- STATE

222 DIS]i TUBE

CAPE C,ANAVET,N, 50 C0-C0 I.,./LRGE 1'1._ES

365 Y_GI TL_E

I_[_TE SANDS 50 C0-C0 I.JLRGE 11.._ES

T (LT)

DENVER 915 DISH Sin.TO- STATE

Pl_g,i STATE 4,04 CO-CO "I'[_E

PrinTABLE 404 STEEPLE]] YAGI SI_,]_- STATE

FRKN'CE 961 gIS_ Sill.Ill-STATE

LT (BL)

N'I_ (R._CZ.TrER) 3000 DISI[ 'tUllE

UZR, ( l:'l,,t-C'_) 3000 DISI4 ;['[._E

NOAA (.8,/.,) 915 FI C_OS71L]_ Sol.m- STATE
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Continuing improvements in signal processing hardware make the use of

coded transmitter pulses increasingly attractive. This development tends to

favor the use of solid-state transmitters since in general they are better

suited to operation at the higher duty cycles possible with coded pulses.

Safety considerations also favor solld-state transmitters since they use low

voltages that are not dangerous to personnel. In addition, new developments in

small (LT) radars suggest that they will be capable of unattended operation in

remote locations. Finally, using atmospheric profilers with acoustic sources

to obtain temperature profiles with the PASS (Radio Acoustic Sounding System)

technique holds great promise. To date the technique has been demonstrated

with 47, 50, 404 and 915 M_Hz radars. Height coverage is best at lower VHF,

particularly if the radar beam can be steered, and is limited to about 1 km

above the surface at 915 MHz due primarily to acoustic attenuation. The use of

atmospheric profilers in the PASS mode to obtain temperature profiles is cur-

rently under active investigation and PASS equipment may well be a standard

addition to operational wind profilers in the future.

SUMMARY OF HARDWARE DESIGN SESSION

Papers presented in this session covered a number of hardware design

subjects. Antenna topics ranged from the design of new antenna elements to

steering, feeding and calibrating array antennas. Antenna element designs for

a new Yagi antenna for the planned Equatorial Observatory were presented as

were designs for a novel hexagonal grid antenna and a mlcrostrip antenna for

use with lower troposphere profilers. Other antenna papers discussed steering

for the Flatland radar, feed systems for the Indian radar and calibration of

the Chung-Li antenna. Results from LSEET (France) suggest that the height

coverage of lower V}{F ST radars can be extended down to 500 meters above the

surface by the use of a low-power solld-state transmitter. Another paper

described proposed modifications to the EISCAT radar to allow it to operate as

an MST radar. The largest and smallest atmospheric profiling radars were

discussed in papers describing the design of the very large Equatorial

Observatory radar and a new small UHF radar for the boundary layer. Finally,

results from temperature profiling using the PASS technique with both the MU

radar and a small UHF boundary layer radar were also presented.

It was pointed out in the discussion that the most difficult problem for opera-

tional atmospheric profiling is obtaining a clear frequency assignment. This

has important implications for the new commercial profilers since it would be

most efficient in terms of hardware development and manufacturing if one fre-

quency could be used in all countries. We also discussed the important role

that atmospheric radars can play in education, since their design and use spans

the disciplines of electrical engineering, computer science and atmospheric

science.
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THE FLATLAND RADAR ANTENNA STEERING IMPLEMENTATION

J.L. Green and W.L. Clark

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, CO 80303

Rapid antenna beam steering has been added to the Flatland Radar system

(GREEN, et al., 1988) to provide for additional atmospheric studies. Such

studies include the measurement of the angular properties of scattering from

the troposphere and stratosphere and the estimation of the vertical transport

of horizontal momentum. The use of rapid switching between multiple beams also

facilitates the automatic editing of radar data and allows more reliable opera-

tion in the presence of convective storms where the returns from only one beam

are affected.

The Flatland Radar antenna is comprised of two orthogonal collocated

arrays of lines of coaxlal-colinear dipoles. The orientation of these lines of

dipoles are arranged so that one array can be steered in the east-west vertical

plane and the other in the north-south. Each of these arrays is treated by the

Flatland control and data processing system as being a part of an independent

radar (GREEN AND CLARK, 1988). Individual radio frequency phase shifter units

are provided for each line of dipoles so that it is possible to steer the beams

from these arrays independently by adjusting the phase shift between the lines

of dipoles. Each of these arrays can be steered from horizon to horizon with

an angular resolution of 1.7 ° near the zenith.

The radio frequency shifters are of the binary type, that is, summable

phase increments of 1/2, 1/4, 1/8, 1/16, 1/32, and/or 1/64 wavelength can be

switched in or out of the circuit under the control of the online computer.

The switching elements are encapsulated reed relays that can withstand I0,000

volts and have an expected lifetime of > 1.5 × ]07 operations, if switched in

the absence of radio frequency power.

REFERENCES

Green, J.L., G.D. Nastrom, K.S. Gage, T.E. VanZandt, W.L. Clark, and

J.M. Warnoek (1988), Observations of vertical velocity over Illinois by

the Flatland Radar, Geophys, Res, Lett., i_, 269°272.

Green, J.L. and W.L. Clark (1988), Flatland online signal processing and radar

control system, Handbook for MAP, (in press).
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FEEDER NETWORK FOR THE INDIAN MST RADAR

B. K. Sarkar, P. B. Tole, and A. Agarwal

Society for Applied Microwave Electronics Engineering and Research
liT Campus, Hill Side, Powai

Bombay 400 076, India

INTRODUCTION

The Indian MST radar work started in March 1987. The radar is to be made
operational by September 1991. The Indian MST radar is a phased array radar consisting of
32 transmitters feeding 32 x 32 (= 1024) crossed dual Yagi antennas (Figure 1). The operating
frequency is 53 MHz. The peak rf power is 2.5 MW and the average power is 60 kW. Pulse
width varies from 1 gs to 32 I_s. The array aperture power distribuaon follows a modified
Taylor distribution for 20 dB sidelobe level. There will be six beam positions, viz., zenith,
+20 ° north-south, +20 ° east-west and 12° due north from zenith. The aperture power
distributions of the planar array of 32 x 32 Yagi antennas are achieved in one direction by
tapering the power outputs of each of the transmitters and in the other direction by tapering the
power by the feeding network. The beam tilt angles are changed by 32 low power phase
shifters associated with the exciters for 32 transmitters and by polarization switches. The
feeding network is to connect each transmitter to a row of 32 Yagi antennas and taper the
power input to each of the Yagis to get a modified Taylor distribution of aperture power.

FEEDING NETWORK CONFIGURATION

Each transmitter can be connected to 32 dual Yagis by parallel feed consisting of
unequal binary power dividers or by series feed consisting of directional couplers. Though
parallel feed has better bandwidth performance, in the case of the Indian MST radar where a
row of 32 Yagis occupies 123 meters and the separation between two consecutive rows or
columns of Yagi antennas is 0.7k (= 3.96 meters), it will be difficult to lay physically all the
binary power dividers between two consecutive rows or columns besides the difficulties of
achieving better isolation and unequal power division. Therefore, series feeding network
consisting of directional couplers is chosen for the Indian MST radar. The coupling of the
directional couplers are chosen such that the coupled outputs form a modified Taylor
distribution. Due to bandwidth consideration, the array is center-fed instead of end-fed. For
two polarizations (north-south or east-west), two similar sets of feeder lines and power
divider/combiners with 32 nos. of high power polarization switches (SPDT) will be used
(Figure 2). Power from each of the 32 transmitters is fed to a duplexer. The output of the
duplexer is connected to a high power SPDT switch. Each output of the polarization switch
(SPDT) is connected to a high power divider (1:2) (situated in the antenna field) by rigid
coaxial cable (LCF-CU2Y), 1 5/8" and 7/8"). Each output of the power divider is connected to
15 directional couplers in series. The outputs of the divider is connected to 15 directional
couplers in series. The outputs of the coupled ports (which make the modified Taylor
distribution) are connected to Yagi antennas by RG-8 cables. The maximum and minimum
powers delivered by transmitters are 118 kW and 22 kW, respectively. Distributed couplers
(rectangular coaxial line) will be used for power level above 25 kW, whereas lumped coupler
(using capacitances and inductances) will be used for power level below 25 kW. The total
number of distributed and lumped couplers are 608 and 1312, respectively. Experimental
results for distributed and lumped couplers are shown in Figure 3. The transmitters are located
in huts outside the antenna field as shown in Figure 2. The location of the huts are optimized
to get minimum possible cable length required to connect the transmitters to the input of the
power divider. The electrical length of the cable from each transmitter to input of the power
divider is kept equal. The one-way loss due to feeder network is about 2.8 dB (including
duplexer and SPDT switch losses). The calculated bandwidth for the center-fed feeding
network is about 3 MHz. Table 1 gives the various components of the feeding network.
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Figure 2. MST radar feed network configuration.
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Table I. Components for the Feeding Network.

COMPONENTS REQUIREMENTS

In-phase power divider including power monitor
for phase calibrator

High power SPDT switch

Couplers:

a. Distributed type
b. Lumped type

LCF-CU2Y 1 5/8" coaxial cable

LCF-CU2Y 7/8" coaxial cable

50 ohms rigid line 1 5/8"

64 Nos,

32 Nos,

608 Nos.

1312 Nos.

5.2 K.M.

8.2 K.M.

500 Nos. (2.3 meters
length each)
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TEMPERATURE PROFILING WITH AN ACOUSTIC SOURCE AND A UHF WIND PROFILER

P. E. Currier, W. L. Ecklund, D. A. Carter, J. M. Warnock, and B. B. Balsley

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, Colorado 80303

MATUURA et al. (1986) were the first group to use a wlnd-profillng radar

(the 47 MHz MU radar) in the radio acoustic sounding system (RASS) mode to

measure temperature profiles. Following their example, in October, 1987 a

small 915 MHz wlnd-proflllng radar (ECKLUND et al., 1988) was also operated

with an acoustic source to obtain temperature profiles using the RASS technique

(CURRIER et al., 1988). In our adaptation of this technique a continuous

acoustic source is stepped or swept across those frequencies that have a

wavelength in the atmosphere of 1/2 the radar wavelength. The temperature at a

given height is determined (with corrections for relative humidity and the wind

component along the radar beam) by noting the acoustic frequency that gives the

maximum radar return at that height (Bragg matching). Preliminary comparisons

of temperature profiles measured with the 915 MHz PASS and by a nearby balloon

showed good agreement.

Since wlnd-profilers measure the wind component along the radar beam, the

temperatures measured in the PASS mode can be corrected for wind speed to give

temperature measurements with relatively high time resolution. This should

allow measurement of heat flux as described by PETERS et al. (1985}. The BASS

returns at 915 MHz are very strong at the lowest altitudes so that we may be

able to obtain temperature profiles with resolution to 30 meters in the lowest

few hundred meters. The only obvious problems with operating the 915 MHz radar

in the RASS mode are the noise pollution from the continuous acoustic source

and the limited height coverage (up to about 1 km above the surface) due

primarily to acoustic attenuation.
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A MICROSTRIP ANTENNA ARRAY FOR UHF WIND PROFILING

W. L. Ecklund

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, Colorado

A small boundary layer radar operating at 915 MHz has been developed at

NOAA's Aeronomy Laboratory (ECKLUND et al., 1988). The radar uses a microstrip

antenna panel which combines radiating elements and transmission lines on a

single printed-circuit board. The .9 by .9 meter circuit board (based on a

design by ASHKENAZY et al., 1983) is mounted above a lightweight, rigid metal

honeycomb panel that is both a support structure for the antenna and also the

antenna ground plane. The RF connection to the board is at a single point near

the center, and the connector is located on the back of the panel. All of the

16 patches are driven in phase for broadside radiation. A single antenna

module has a measured half-power, one-way beamwidth of 18 degrees, and modules

can be connected together to achieve the desired antenna area and beamwldth.

The microstrip antenna panel described above is lightweight, rugged and

lends itself to mounting low to the ground to reduce unwanted ground clutter.

To date we have operated the mlcrostrlp antenna panels either fixed in azimuth

and elevation or fixed in elevation (15 degrees from zenith) and rotated in

azimuth. Although the inverted circuit board serves as a tough, weatherproof

cover, we have found that water on the panel reduces antenna efficiency.

However, if the water is separated from the circuit board by several cen-

timeters, the reduction in efficiency is negligible. This suggests that either

the board will have to be covered by a layer of low-loss spacer material, or

that the panel will have to be mounted under a waterproof radome for operation

in rain.
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HEXAGONAL GRID PHASED ARRAY FOR WIND PROFILING

R.J. Jost, J.J. Wilcox, and K.S. Kelleher

System Planning Corporation
Arlington, Virginia

I. INTRODUCTION

This paper examines the effects of random phase errors on the performance of a phased array

antenna system designed for wind profiling. System performance is measured by principal gain,
main-lobe to side-lobe ratio, and the half-power beamwidth. An array created by placing individual

antenna elements one wavelength apart in equilateral triangles on a hexagonal grid is shown to be

reasonably insensitive to random errors in phase shift.
This design, while maximizing the antenna aperature with a minimum number of elements,

may not be generally optimal in terms of the field pattern generated. In fact, the apparent separation
between elements exceeds one-half wavelength at several azimuthal aspects and results in the
formation of grating lobes at the horizon. This can result in significant return from the plane

horizontal to the array (ground clutter) depending on the individual element pattern. By carefully
controlling the element factor, the amount of energy radiated in the ground plane may be reduced to
-40 dB from the main beam.

The analysis relates the distribution of random phase errors to the degredation of the

performance indices. In this way, a determination can be made as to which of the performance
indices are sensitive to phase error. Also, it can be determined how much phase error can be

tolerated and still have the system meet a given set of specifications.

II. SYSTEM DESIGN

The wind profiler phased array antenna system under consideration is composed of 61
elements arranged in equilateral wiangles on a hexagonal grid. Adjacent elements are separated by a

distance of one wavelength (Figures 1, 2). The individual elements are dipole antennas located in a
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reflective trough designed to reduce the amount of energy radiated horizontal to the plane of the
army. Using the center element as the reference and labeling scheme of Figure 1, the distance from
the center element to the k,j th element is given by 0,86610. in the x direction and 0.5j _. in the y
direction.

The electric far field pattern for the array can be calculated by combining the element factor
(the power pattern of a single array element) with the array factor. The element pattern for the
antenna used in this system was obtained by direct measurement and is a function of elevation only
(independent of azimuth.) The array factor is calculated by summing the contributions of each
element according to

E(0,¢) = 20log I _ _ Ak,jexp{il3(dxU+dyV)+it_,$} I -10log A_,j (1)

k-=---4 j=lk]-8 j=lk]-8

where: Ak,j = voltage driving the k,j th element

2_
13= --_--, U = sin0cos_, V = sin0sin_, i = q'Zi"

txk.j = phase shift of the k,j ± element relative to the center element

The second term in (1) normalizes the power gain so that it can be expressed in dBi (dB relative to
an isotropic source).

From (1), the direction of maximum field intensity occurs when tzkj = -l_(dxU+dyV). By
altering the relative phase shifts, the main beam can by 'steered' in any direction within the
envelope of the individual element pattern. The system is currently configured to take data at 4
oblique beam positions in addition to directly above the array (vertical beam position). These beam
positions are each 15 degrees off of vertical in the north, east, south and west directions
respectively (Figure 1).

PERFORMAN(_E CRITERIA

System performance is measured in terms of the following performance indices:

- Main Lobe Gain -- Gain at the main lobe in dB relative to an isoa'opic source (dBi)
- Main Lobe to Side Lobe Ratio
- 3 dB Beamwidth -- width of the main lobe from the maximum to the half-power point.

In Figure 1 the far field pattern for the vertical beam position is plotted. The azimuthal cut is
taken along the N-S axis (¢ = _'4). In Figure 2 the elevation is fixed at rd2 and all 360 degrees of
azimuth are swept through, thereby yielding the energy radiated in the ground (horizontal) plane.
The goal of this analysis is to determine bow each of these 3 performances indices are affected by
random phase error.

III. PHASE ERROR ANALYSIS

The goal of the phase error analysis is to quantify the effects of phase error on system
performance. System performance will be measured by the three performance indices defined
above.

PHASE ERROR ASSUMPTIONS

Regardless of the type of phase shifter employed in the phased-array architecture, there will
be some error introduced into the system during phase shifting. The error contributed by a given
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phase shifter is a random variable drawn from some distribution. The nature of the error

distribution depends on the phase-shifter used, however, the following assumptions can be made

about ,_ctj, the error term contributed by the jth phase shifter.

1. The error term contributed by any phase shifter Aaj is independent of the error term

associated with any other phase shifter ,_etk (k_j)

2. The errors Aaj and _at k are drawn from the same, Gaussian distribution with standard

deviation act.

Phase error, therefore, is defined in terms of the standard deviation of its distribution. As the

standard deviaion of the error increases, the probability that the actual phase shifter will lie near the
expected value of the phase shift decreases.

PROCEDURE

First, a system is defined by drawing 61 random phase errors (one error term for each phase
shifter is evaluated) from the same Gaussian distribution vAth a given standard deviation. Next, the

performance of the system under these conditions is evaluated. Having evaluated the system, a

new set of phase errors is drawn from the same distribution and system performance for this new
architecture is evaluated. This process is repeated until enough samples of performance have been

obtained to define the distribution for the performance index.
This would complete the analysis of array performance assuming a given set of error terms

with a given standard deviation. The next step in the analysis would be to increase the standard
deviation of the error terms and examine how that error distribution would affect system
performance.

INTERPRETATION

The results of the phase error analysis are interpreted as follows. Consider the following
example for an error distribution with a standard deviation of 10 degrees. If the mean beamwidth

were found to be 7 degrees and the standard deviation of the beamwidth were found to be 0.1

degree, under these conditions, the probability that the actual beamwidth lies between 6.8 and 7.2

degrees is greater than 95%. This is the approach that would allow a system to be designed with
any desired level of confidence in a given performance index.

CALCULATIONS

Using the method outlined above, the effects of random phase error on beamshape can be

quantified. The 'amount' of error present is represented by the standard deviation of the phase
errors. This value has been measured at approximately 9 degrees. The expected value of each

performance index is presented along with its standard deviation as a function of error. A given

phase error standard deviation can yield significantly different beamshapes depending on the exact
values of the phase error. That is, simply knowing the standard deviation of the error terms only

allows the expected values for the performance indices to be presented. Only when given the exact

values for phase shift can exact parameters be extracted from the beamshape.

Main Lobe Gain

From (1) and the element pattern the ideal gain at the main lobe is found to be 28.9 dl3i.
When random phase errors are introduced into the system, there is some loss in gain at the main

lobe. In Table 1 this degredation is quantified.
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T_l)lg 1, Eff_|_ of Error on Main Lobe Gain

standard deviation mean gain standard mean power
of e_or deviation loss

1degree 46.68 2.27E-04 0.00 dB (0.0%)
3 degrees 46.67 2.04E-03 0.01 dB (0.0%)
5 degrees 46.65 5.68E-03 0.03 dB (0.1%)
15 degrees 46.38 5.13E-02 0.30 dB (6.7%)
30 degrees 45.49 2.08E-01 1.19 dB (24%)

3dB Bcamwidth

Using the procedure outlined in section 2.2 the degradation in the 3dB beamwidth can be
quantified. The results appear in Table 2.

Table 2. Effects of Error on 3 dB Beamwidth

standard deviation _ standard deviation
of error

1 degree 6.5 degrees 0.0170 degrees
3 degrees 6.5 degrees 0.0511 degrees
5 degrees 6.5 degrees 0.0853 degrees
15 degrees 6.5 degrees 0.2578 degrees
30 degrees 6.5 degrees 0.5246 degrees

These results can be interpreted as follows: Errors in phase shift can either increase or
decrease the 3 dB beamwidth and are equally likely to do either. As the error increases, the
deviations from 6.5 degrees increase in magnitude.

Main Lobe to Side Lobe Ratio

In Table 3 we present the effects of random phase error on the main lobe to side lobe ratio.
Recall that Side lobes are evaluated along a N-S azimuthal cut.

Table 3. Effects of Error on Sidelobe Level

standard deviation mean ratio standard
of error

1 degree 18.51 dB 0.0843 dB
3 degrees 18.51 dB 0.2518 dB
5 degrees 18.51 dB 0.4229 dB
15 degrees 18.81 dB 3.220 dB
30degrees 20.94 dB 9.350 dB

IV. CONCLUSIONS

It has been shown that a 6t-element phased array system, configured as in Figure 2, is
relatively insensitive to errors in phase shift. Also, system performance will not be significantly
affected by errors in element location as this is also a form of phase error.

Actual errors in phase shift for this system have been measured and in Figure 5 a far field
pattern based on these measurements is presented. For comparison, the error-free field pattern is
also presented and the difference is highlited. The standard deviation of these error terms is
approximately 9 degrees.
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Fig 3: Field Pattern Along N--S Azimuth
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Antenna Design for an Equatorial Radar

Toru Sato*, Shin-ichi Taniguchi, Shoichiro Fukao,
Toshitaka Tsuda, Mamoru Yamamoto and Susmnu Kato

Radio Atmospheric Science Center, Kyoto University
Uji 611, Kyoto, Japan

1 Introduction

A large 47-MHz Doppler radar, which is to be constructed on tile equator in Indonesia, is under
design at the Radio Atmospheric Science Center (RASC), Kyoto University. The importance

of studying the equatorial region in understm_ding the global climatology has been pointed
out in many occasions, so it is not repeated here.

The radar system will be an enlarged version of the MU radar at Shigaraki, Japan, which is

designed to cover both the middle and the upper atmosphere, and characterized by its unique
active-phased-array antenna design (Fukao et al., 1985). Basic requirement for the capability

of this new radar is that it should be able to observe the entire atmospheric region, starting
from the lower troposphere up to the upper ionosphere of around 1000 km in height, with a

good height and time resolution so that the dynamical coupling between different regions can

be studied. Here we report the current status of the antenna design for this equatorial radar.

2 Technical Specifications

Based on the experiences of the MU radar and other atmospheric radars, it is requested
that the new radar should have about ten times more sensitivity, or namely, the power-

aperture product, than that of the MU radar. Taking the advantage of availability of wide

area in Indonesia, it has been decided to realize this enlargement in terms of the aa_tenna
aperture rather than the transmitter output power, which means that the antenna should
have a diameter of about. 300 m.

As for the steerability is concerned, it is requested that we can point the antenna beam

perpendicular to the magnetic field at ionospheric heights, which condition takes place when
the beam is tilted 20° from the zenith to the north. Prom meteorological viewpoint, it is

desirable to have a steerability as flexible as possible. The current agreement is that the

antenna beam can be pointed to any direction within the zenith angle of 20° .
Other practical requirements are that the entire array should have periodic or at least quasi

periodic arrangement from constructional considerations, and that the all antenna elements
should be identical from economical reasons.

•Now at Department of Electrical Engineering II, Kyoto University, Kyoto 606, Japan
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Fig. 1. Arrangement of antenna elements in an array. The left panel shows the
sub-array configtu'ation, and the right panel is for ordinary triangular array.

3 Considerations on a Sub-array Design

Under the constraints stated above, we first tried to minimize the number of transmitter-

receiver (TR) modules, which has functions of phase shifting, power amplification, and TR
switching, and naturally is the most costly component in the entire radar system.

The idea was to feed a group of 4 antenna elements by a single TR module, and arrange

the groups, which are called sub-arrays, on a equilateral triangular grid. Figure 1 schemati-
call)' draws the arrangement of the array for this sub-array design on the left, and ordinary

equilateral triangular arrangement, as used for the MU radar, on the right. Each + sign in
the figure denotes an array element.

It is known that a equilateral triangular grid provides the largest steerability of the antenna
beam for a given spacing between elements. By choosing b = v'_a/2 in the left panel, the ele-

mcLtts of sub-arrays constitute a rectangular grid, while sub-arrays are arranged oa triangular
grid. In the right panel, b = v_a/2 and c = a/2 for the equilateral triangular grid.

If we choose that a = A, where _ = 6.38 m is the radar wavelength, we can obtain an

aperture size of about ten times larger than that of the MU radar with the same number of
TR modules, The largest advantage of this design is that we can apply entire MU radar design

m the new radar without any modifications except for the antenna. This conservative way

reduces the chances of troubles in constructing a large system at a very distant location from
tlw RASC.

However, this sub-array design obviously have a problem of grating lobes, since the spacing

between the sub-arrays is as large a.s 2),. With a periodic an'ay configuration, several grating
lobes with comparable magnitude to that of the main lobe appear even with a small beam
steering angle from the zenith. This problem can be reduced to some extent by relaxing the

('onstraim on the periodicity of the array. However, a large deviation from the periodic array,
such a.s a random array configuration, should be avoided for two reasons: Firstly, the mutual

coupling between elements becomes variable fl'om element to element, resulting in phase and
aml)litnde errors of the elements, which are hard to evaluate nor to compensate. Secondly, the

construction and maintenance becomes lnore complicated and difficult than a periodic array



537

-80
£0 80 30 0 -30 -50 -80

Zen i th ongl e deg }

Fig. 2. Antenna pattern for a quasi-circular m-ray having a diameter of about 300 m

with a sub-array configuration and a uniform space tapering. The solid line is a pattern

for the vertically pointing beam, and the dotted line is for a beam with 10 ° zenith angle.

as the irregularity of the arrangement increases.

We thereby considered a uniform space tapering as a possible solution, with which the

spacings between the rows and columns of elements are linearly increased fl'om the center of

the array toward the outer edge. Figure 2 shows an example of the total antenna pattern for

a quasi-circular array having a diameter of about 300 m with a sub-afro, configuration and a

uniform space tapering. Spacing between elements is changed fl'om a = 0.9,k at the center of

the array to a = 1.1,k at the outer edge. The element pattern used in this figure is an empirical

one for a single Yagi antenna. The solid line is a pattern for the vertically pointing beam,

and the dotted line is for a beam with 10 ° zenith angle. As shown in this pattern, the space

tapering is effective in scattering the grating lobes at low elevation angles, but has little effect

on grating lobes near the main lobe. This tendency is the same with a larger tapering of as

large &s 30%. Further more, the peak level of a grating lobe becomes higher than the desired

beam if the zenith angle of the beam is increased to 200 . These results convinced us to employ

a more conservative design of exciting all array elements with independent TR inodules.

4 Design of the Array

Abandoning the sub-array design means an increase of the TR modules by a factor of four.

Accordingly, we decided to reduce the output power of each TR module to 1/4 of that of the

MU radar by reducing the nmnber of power transistors.

The upper limit of the element spacing a for a equilateral triangular array as shown in the

right panel of Fig. 1 for which no grating lobe appears when the beam is steered by 20 ° flom

the zenith is 0.83,k, or 5.3 m at 47 MHz. Figure 3 shows the current plan for the arrangement

of the antenna array. The entire array consists of 43 groups, each of which contains 61 array

elements and identical mnnber of TR modules. The group is a nfinimum unit which can be
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Fig. 3. Plammdarrangementof thearray,Each4-signdenotesan_,rl'_tyelement,
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63,600m2.

usedasaseparateradarsystem,andcontrolledbyamicro-processor.Plussignsin tilefigure
denotearrayelements,andsevensquaresaretileboothswhichcontainTR modules.The
totalnunlberofarr_,elementsis2,616covering an area of 63,600 1112.

Figure 4 shows the antemm pattern of the array as shown in Fig. 3. The cqement pattern is

the same empirical one a,s used in Fig. 2. The solid and d_shed lines show the patterns when

the antenna beam is pointed to the vertical and 20 ° off-vertical directions, respectively. Tile

one-way half-power beamwidth is 1.2% The first sidelobe level is 20 dB lower than the main

lobe level, and low elevation sidelobes are suppressed to le:ss than -40 (lB.

5 Design of the Element

We have chosen crossed Yagi-Uda antenna as the array element because of ils simple struc-

ture, relatively high gain, and capability in synthesizing various polarizations. A mmlerical

optimization procedure as used for designing the MU radar is employed. It maximizes the

element gain by adjusting the length and spacings of subelements in tile absence of the re-

flecting ground so that backward radiations can be minimized. The mutual coupling between

the elements are taken into consideration by assuming an iufinite array for which all elements

have identical current. The assumption of the infinite array is a good approxinmtion for arrays

with nmre than a few hundred elements (Fukao et al., 198611.

Since the spacing between array elements is slightly larger than that of the MU radar, we ex-

amined both three-subolement Yagi's and four-subelement Yagi's in the design, and applied the

numerical optimization procedure for both of them. Although the optimized rhroe-subeloment
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Fig. 4. The one-way total pattern of the plmmed axray shown in Fig. 3 for the vertical

(solid line) and 20 ° off-vertical {dashed line) beam directions. The half-power beza_]
width is 1.2 ° .

Yagi has aal element gain very close to the theoretical upper limit determined by the physical

area which an element occupies, it showed a large variability in its characteristics when the

height of the mltenua above ground is changed. While the optimized four-subelement Yagi

showed no better performance than the three-subelement one in the absence of the reflecting

ground, it suffers a much less effect from the ground. Figure 5 shows the dimension of the op-

timized four-subelement Yagi and its characteristics. The four panels show the resistance and

the reactance components of the active impedance, the voltage stranding wave ratio (VSWR),

and the element gain versus fi'equency. The solid and dotted curves denote chm'acteristics in

the presence and absence of the reflecting ground, respectively. The dashed line in the figure

of gain shows the theoretical upper limit of the element gain.

6 Summary

Current status of the antenna design for the new equatorial radm' has been reported, After

the technical specifications for the antenna were summarized, the curi_nt design for the re'ray

and the array element were reviewed. The atteml)t to increase the antenna aperture without

increasing the number of TR modules from that of the MU radm" did not satisfy the require-

ments. Characteristics of the current design consisting of 2,616 four-subelement Yagi's were

presented.
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S'I_._ OF _ _ SPACE _ _ _ PROFILER

Paul Jo_t_

Technology
Boulder, Colorado

A new wind profiler has started operation at the Kennedy Space Center

(KSC). This radar started operation in November i, 1988. Located near the

Shuttle runway, this radar is designed to give NASA increased information about

winds aloft. This information is to be used primarily for assessing the

variability of wind fields, so that increased confidence in the validity of

jimsphere measurements made prior to shuttle launch can be established.

The system currently operating at KSC is a limited capability subset of

the final system. It i8 operating in a temporary building, using only the

solid-state predriver amplifier for a transmitter. Table 1 shows the current

capabilities, and the final system capabilities.

Table I.

Nasa Kennedy Space Center Ascent Wind Profiler System

PRESENT FINAL

CONFIGURATION CONFIGURATION

Antenna

Elevation Angle 90 ° , 75 ° 90 ° , 75 °

Azimuth 45 ° . 135 ° 45 ° . 135 °

E Plane Beamwidth 2.9 ° 2.9 °

H Plane Beamwidth 2.7 ° 2.7 °

Sidelobe levels

Elevations > 40 ° < - 20dB < - 20dB

5 ° < elevation < 45 ° < - 25dB < - 25dB

Elevations < 5° < - 40dB < - 40dB

Transmitter

Peak Power 4 kW 250 kW

Average Power 400 W 12.5 kW

System Noise Temperature < 500 K < 500 K

Time Resolution 6 min. 3 min.

(full wind vector)

Spatial Resolution 150m and 600m 150m

Number of Range Gates 56 112

Pulse Coding 8 Bit Complimentary 8 bit Complimentary

The current system operates in two modes. One mode uses 150 meter

resolution to get winds in the troposphere. The other mode uses 600 meter

resolution to get data into the lower stratosphere. Figures 1 and 2 show wind

data from each mode. These figures show hour winds obtained at the radar. A

consensus average is used to omit noise points.

The installation of the final building and the high power equipment will

take place in the spring of 1989.
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LONG RANGE PLANNING FOR DEVELOPMENT OF FULL MST CAPABILITIES
AT EISCAT

Gudmund Wannberg, Jttrgen Rtttger and Cesar LaHoz
EISCAT, Box 812, S-981 28 Kiruna, Sweden

P.J.S. Williams

University College of Wales
Aberystwyth Dyfed SY23 2AX, UK

Introduction: The EISCAT radar first went into regular operation in 1981, using the 933
MHz tristatic UHF system for incoherent scatter observations of the altitude region from just
below 90 km up to above 500 kin. The performance of the radar over this range has
gradually improved over the years and is now generally recognized to be excellent. The
relatively short wavelength of this system, 3. = 0.32 m, has been a limiting factor in applying
it to middle atmosphere research, and the commissioning of the EISCAT VHF system (3. =
1.34 m) has therefore been eagerly awaited by the MST community.

The EISCAT radars were originally planned only for ionospheric work (BARON, 1984,
1986). As a consequence, many subsystems were designed to process only incoherently
scattered signals. This made for economy at the time but will now make it very hard to
achieve acceptable ST performance without major redesign. Some of the more important
system parameters are listed in Table 1.

Present status:

Although the VHF system is stiU only partially operational, practical experience with it,
accumulated over the last two summer seasons, has shown that its sensitivity is more than
good enough for observation of some types of scattering mechanisms in the mesosphere,
even though conventional wisdom would have it that the 1.34 m wavelength should be well
within the viscous subrange (ROTTGER et al., 1988). This experience, supported by a
continually growing interest from middle atmosphere scientists in the EISCAT member
countries, has prompted the Scientific Advisory Committee of EISCAT to appoint a working
group, with the task of looking into how the VHF system could be enhanced into a fully
capable MST radar. The working group is supported in its task by EISCAT excecutive staff.
The ideas for upgrading presented below have been largely worked out at EISCAT
Headquarters over the last year, and do not represent the final views of the working group.
Even so, the design targets listed in Table 2 are probably very close to what may ultimately
be achieved.

Meanwhile, a set of complementary coded experiments have been developed, which can run
in the existing hardware/software environment without any changes to the system being
necessary. They allow the use of the VHF system as a mesosphere radar with altitude
resolution down to 300 m and spectral resolution approaching 0.5 Hz. These programs will
become part of the program library available to all visitor; in the immediate future.
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TABLE 1: System parameters of the EISCAT radars

UHF

Transmitter type

Transmitter bandwidth (MHz) 3.0

Associated altitude res. (m) 50

T/R switching time (us) ?

Radar controller time
resolution (us) 1

ADC resolution (bits) 8 + 8

Max. sampling frequency (MHz) 10

Associated buffer memory (words) 4K complex

Buffer memory available
when sampling at 500 kHz (words)

Preprocessor

Correlator max. multiply-add
rate (MHz, complex products) 5

Correlator input word length (bits) 8 + 8

Correlator result memory (words) 4K

Raw data disc storage 450Mbyte total

16K complex

- not available -

VHF

- multicavity klystron -

> 8.0

< 19

> 100

1

8+8

10

4K complex

16K complex

5

8+8

4K
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TABLE 2: Design targets for the MST upgrading ._f EISCAT

Range resolution

Associated modulation bandwidth

T/R switching time

Radar controller time resolution

ADC sampling frequency

ADC resolution

Buffer memory capacity

Preprocessor throughput rate

15 m (dedicated transmitter)

45 m (existing VHF transmitter)

10 MHz (dedicated transmitter)

3 MHz (existing VHF transmitter)

>50 us (existing VHF transmitter)

100 ns

10 MHz

>10 bits

>4 K complex words

>4 M complex samples/s

Discussion:

It is obvious from an inspection of Table 1, that the VHF system is not at all well suited for
tropospheric work in its present form. The bandwidth of the klystron transmitter cannot be
increased by any known means; furthermore, the present flequency allocation for the VHF
system borders on the European TV Channel 11 on the low side, so a significant increase in
transmitted bandwidth can only be achieved after securing additional frequency allocations
upward of the present one. Whether we can get these at all is unclear at present.

The T/R switching time of the VHF system is tabulated as unknown, because the VHF radar
is capable of being operated with its front end configured in at least four different ways,
each of which may show different recovery time. In the most commonly used configuration,
the actual switching takes some 50 us. To this one must add the recovery time of the
receiver, which is at least of the same order. Altogether, this makes the system marginally
acceptable for stratospheric work as it is. A group at the Swedish Institute of Space Physics,
Kiruna, Sweden, has plans to do a series of tests at stratospheric ranges during 1989, which
should lead to more conclusive knowledge about the actual performance. The altitude
resolution will still be limited to > 150 m at this time.

The present radar controller is in many ways the most limiting piece of equipment in
EISCAT - it has too coarse time resolution for MST applications and no provisions for
looping, conditional branching or subroutines. It will be replaced by a new design, based on

integrated microprogram controllers and address generators, in about two years. Thereafter,
100 ns timing and control resolution will be available. The new unit will permit advanced
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coding strategies to be realized by compact control codes. We have not yet investigated how
the binary phase modulator of the VHF exciter behaves at baud rates greater than 1 MHz,
but it is likely that it can be made to perform weU at least at 3 MHz. Any further
improvement would require the installation of a dedicated wideband transmitter, possibly of
relatively low power, which could then be operated much more regularly for MST work than
the case would be with the existing transmitter - it could for instance be kept in operation
even while the EISCAT LrHF system is running other experiments, which is impossible
today.

In the mesosphere experiments performed so far, the existing correlator has been used as a
coherent preprocessor, with all FFF or ACF processing of the time series being done off
line. As can be seen from Table 1, the correlator speed is sufficient in practice to handle a
few tens of range gates. It is, however, seriously limited both with respect to the small
amount of result memory available as well as to the short word length (8 + 8 bits).

Using the correlator as a preprocessor amounts to using its result memory as an intermediate
buffer, where the decoded data samples are coherently integrated before being dumped to the
next processing stage. When partitioned into 64 timing bins, the 4K'32 bit memory can only
accommodate some 60 range gates. Even more awkward is the lack of double buffering at
the output to the host computer; this results in a gap of at least 65 ms in the sample series
whenever data are dumped, i.e. almost equivalent to two preintegration intervals at 224 MHZ
High frequency resolution studies using long, uninterrupted time series are therefore not
practical at present.

The (8+8) bit word length of the correlator is almost an overdesign for incoherent scatter
purposes. It provides an instantaneous dynamic range of about 45 dB, of which perhaps 10 -
15 dB are actually used in IS work. It would also be sufficient for normal mesosphere
work, if the gain of the analog part of the receiver were reduced, However, processes like
the PMSE occasionally provide signals in excess of this dynamic range. At stratospheric and
tropospheric altitudes, the amount of ground clutter at Tromso, using the existing antenna, is
also so large that this alone will exhaust the resolution. These limitations have been
recognized by EISCAT, and work is already in progress to provide enhanced features. This
proceeds along two main directions:

i) EISCAT is presently developing a generalized device, the MUFFIN (MUlti-channel FIR
Filter and INtegrator)(POSTILA, 1987), which will meet or surpass all requirements for
MST processing tabulated above. It will also include double buffering and flexible scaling of
output data. The MUFFIN is not likely to become available for operational use until the
beginning of 1990, possibly even later, and to become fully useable, it must be
complemented by fast high resolution ADCs. In the interim,

ii) EISCAT is working together with scientists from the Swedish Institute of Space Physics
at Kiruna, Sweden, to tie a stand-alone MST signal processor, now under construction at the
Institute, into the existing EISCAT process computer system. This device is built to the
VME bus standard and resides together with a host computer and 140 Mbyte of hard disk
storage in a standard VME crate. At present, it contains one complex ADC channel
operating with 12 bits of resolution at an uninterrupted 5 MHz sampling rate. Data transfer
into the EISCAT system will be over a IEEE 488 (GPIB) link. The EISCAT process control
computer will merge the data stream from the preprocessor with the block of auxiliary
parameters normally recorded by the system and then ,mite the composite data dumps to
high density tape in the standard EISCAT format. We have selected this approach because it
avoids any intermediate storage of data and produces tapes in a format which is immediately



548

readableby a largecommunity.

This systemwillbecome operationalduringthesecondhalfof 1989,and willgiveus an
opportunitytotesttheperformanceofotherpartsof theradarunderrealisticconditions.In

particular,thestrongsignalhandling capabilityofthereceiverRF and IFpartsmay need to
be improved inordertoobtainan overalldynamic rangematchingthatof thesignal

processor.
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GAIN AND PHASE CALIBRATION OF THE EISCAT RECEIVERS IN MST
APPLICATIONS

Gudmund Wannberg and Jtirgen Rtlttger
EISCAT Scientific Association

Box 812, S-981 28 Kiruna_ Sweden

Tommy Sturk
Swedish Institute of Space Physics

Box 812, S-981 28 Kiruna, Sweden

Introduction:

As a step towards achieving full MS capabilities at the EISCAT radar, we have developed a
program system which performs coherent integration and decoding of arbitrary codes in the
existing EISCAT correlators. Additionally, a gain, phase and absolute power calibration,
which is free of ionospheric clutter from ambiguous ranges, is performed in every receive
cycle. This calibration feature may become extremely valuable when studying highly
dynamic processes with large cross sections, such as the PMSE (Polar Mesospheric Summer
Echo) phenomenon (Hoppe et al., 1988, Rt_ttger et al., 1988).

Our program system was tested during the July 1988 PMSE campaign. Typical PMSE type
signals were observed for part of the time. There are also several quiet periods in the four
hour data set. In the following we discuss the radar receiver performance as a function of
signal strength, using the calibration data as a reference.

Technical details:

The architecture of the EISCAT correlator does not permit the re,circulation of data from the
output (result) memory to the input of the multiplierlALU unit. Consequently, the decoding
must be performed before the coherent integration. Normally, this does not pose a problem,
as the correlator is fast enough to do the operations in this order for a practical number of
range gates. The decoding algorithm simply performs a cross-correlation of the sampled data
points with a stored replica of the transmitted code sequence. The decoded results are then
integrated by direct summation into the correlator result memory. Fig. I presents a schematic
picture of the organization of the resulting data vector.

Our implementation differs from some other approaches, in that it uses a feature of the
correlator input buffer memory, which permits the downloading of arbitrary integer numbers
from the host computer to any area of the memory. Replicas of the complementary codes
used to modulate the transmitter are generated by a FORTRAN program and stored in a disk
file. When the experiment is started, a device handler in the EISCAT real time operating
system retrieves this file and downloads its contents to an area of the buffer address space,
into which the ADC never writes when sampling.

Once stored, the code sequences remain in memory for the duration of the experiment and
can be randomly accessed by the correlator microprogram. In our test, a sequence of four
64 baud codes was used. These were grouped as two complementary pairs of opposite initial
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signs, so that after decoding and summing over the complete sequence, system generated
offset voltages were cancelled.

The program has a built-in "self test" mode. In addition to the replica of the transmitted
modulation, a second data vector containing time shifted copies of the same modulation
patterns is loaded into a different area of the buffer. The operator can change the start
address of the area from which the correlator reads input data by an interactive command.
When the test data area is selected, a sidelobe free and properly compressed response will
appear in a single range gate if everything works properly. Any bit error or address shift
either in the master code or the test codes will manifest itself as incomplete compression and
the appearance of sidelobes.

Receiver gain and phase calibration:

The EISCAT receivers transpose incoming signals down to baseband. The final frequency
translation is combined with the Hilbert transformation of the signal in a quadrature detector,
and the two mutually orthogonal components of this signal are sampled synchronously, using
parallelled ADC's. Every signal processing system using this technique will produce spectral
estimates which are biased by deviations from gain equality or phase quadrature in the
quadrature detector or in the signal path to the ADC's. In the most general case, the biases
must be assumed to be non-linear functions of the instantaneous signal level and cannot be
corrected for by using a constant error model. However, provided that the receiver has a
suitable signal coming through it most of the time, the offsets can be determined from
simple relations between some statistical averages of the signals from the two quadrature
channels (RUSTER and WOODMAN, 1978).

The correction procedure used by Ruster and Woodman does not define the time extent of
the averaging over amplitudes. This may not be too critical anyway in their application, as
they are dealing with an ST radar system, whose receiver output is dominated by ground
clutter under most circumstances. In that case, the level dependent gain and phase offsets
will be much stronger functions of the clutter level than of the actual signal level, and the
averaging period can be chosen to obtain reasonable statistics. When the EISCAT system is
used at mesospheric ranges, we are faced with a quite different situation, because:

i) the ground clutter is almost nonexistent in the 80-90 km range, so the echo signals define
the instantaneous signal amplitude (and hence the offsets),

ii) we do not see a signal all the time in any gate, so a straightforward averaging over time
would lead to an underestimate of the effective signal level during the (sometimes transient)
PMSE events,

iii) the signals which we do see in such events are highly structured and exhibit an
extremely dynamical behaviour, with instantaneous S/N ratios sometimes exceeding 30 riB,
which we now know is strong enough to drive the quadrature detector into non-linearity.

Considering the above points, it is clear that a calibration routine is almost mandatory in
future EISCAT mesosphere experiments using the existing receiver, but it is also evident that
the calibration must be based on something else than the actual signals. We have
implemented a scheme which uses injection of white noise into the receiver front end to
obtain a stochastic signal, on which the calibration is performed. The procedure used is as
follows:
In every receive cycle, a programmable number of calibration samples are taken at a far
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range, from which only incoherent scatter returns are to be expected (about 200 kin). In our
test, N(cal.samples)=32. We denote the cosine and sine components of sample number i by

x(i) and y(i) ,

The correlator program contains a subroutine which produces the two sums

A = ]_ x(i) 2 + y(i) 2 and B = Y. x(i) y(i)
i=l,N i=l,N

The In'st quantity, A, is of course proportional to total power, whereas B should have an
expectation value of zero for all input combinations, if the receiver is working properly. A
nonzero value indicates a deviation from sample quadrature and can be used to implement
fu'st order corrections to the spectral estimates in the analysis phase. A full correction
requires the independent computation of Zx__ and Iiy_z. As this was not done here, we assume

in the following that Zx(i) 2 = Zy(i) 2

The "total power" quantity A must be assumed to contain some contribution from the
incoherent scattering (IS) of the previous transmit pulse by the ionospheric plasma at the
ftrst ambiguous range (about 600 km), and so it cannot be immediately used as a true
representation of system gain. In our code, the incoherent scatter contribution is cancelled in
an average sense by the following technique:

The basic transmit/receive pattern is a group of four subcycles. In the first two, the
calibration samples are taken with the calibration noise source turned off, so that those
samples contain only background noise and IS contributions. In the next two, the calibration
noise source is turned on while the sampling is active. 'The correlator computes independent
A and B estimates for the "noise off" and "noise on" cases and stores them in separate
locations at the end of each range gated time bin in the result memory. If we denote these
by A(1), B(1), A(2) and B(2) and assume the average clutter level to be constant within a
preintegration interval, then

receiver gain G** A(2) - A(1)

receiver quadrature angle 0(i) = arccos (2 B(i)/A(i)), i=],2

on the average. This gives us a number of possibilities to monitor the system performance
and to correct for imperfections.

As an illustration, we use a sequence of data coveting about 10 minutes on July 2, 1988 at
10.25,30 UT. (See Fig.2). The calibration values from all 64 time bins in each dump have
been summed and the sums postintegrated over 30 seconds, i.e. 15 dumps. There are thus
4-32 64.15 = 1.23 I(P estimates in each plotted value. If these were truly statistically
independent, the normaiized variance should be 1_ (1.23' 105) = 2.85-10 3. The actually
observed variance is about 1.97-10 3 both for the background series as well as for the
(background+calibration) one. This discrepancy is almost totally due to the correlation
between adjacent samples induced by the non-instantanexms impulse response of the receiver.

The behaviour of the phase quadrature term is more ala_ng. The value obtained as long as
the signal level is low is very close to 90 degrees. During noise injection, however, the
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phase offset becomes very large, of the order of I0 degreesl The receiver phase quadrature
is obviously strongly dependent on signal strength. 11 should be pointed out, that the
calibration noise level was much higher than normal during this experiment, due to a
mistake when configuring the receiver front end, approaching the equivalent of 1500 Kelvin
antenna temperature or about + 7 dB relative to the receiver noise floor. Normally, this
would have been disastrous, but since the PMSE echoes were occasionally several tens of
decibels above the noise floor, it was rather an advantage.

The present result suggests that the phase quadrature offset is even worse at the signal levels
produced by the PMSE than at the calibration level. This will affect all velocity estimates to
some extent. Unfortunately, the experiments used for the actual data taking during the PMSE
campaign did not contain the calibration feature, so it will be very hard to obtain proper
correction factors for those data sets. Assuming that the attenuator settings used in the two
different experiments were approximately the same, i.e. that the actual signal levels seen at
the quadrature detector were comparable for equal echo strength, we can at least obtain an
order-of-magnitude estimate of the velocity error as follows:

In the lag domain, the signal amplitude phase angle at time % is

c} ('0 = arctan fire R(x)/Re R(x)),

where R('0 is the complex autocorrelation coefficient at time %. Following (RUSTER and
WOODMAN) we can compute an equivalent estimate based on the actual sampled
(uncorrected) dam:

(}(%)= arctan (cos8 ', Im R'(%)/Re R'(x))

where 8 is the correction for imperfect quadrature, i.e.

8 = - (n/2 - O)

For small phase angles, i.e. for the condition expected at the first few lags of the ACF,

(} = tan_ = (1-sin 8/2)(Im R'('0/Re R'(x))

The phase error at a given lag is thus multiplicative and of the order of sin 8/2. For our case
with 8 = IIY, the effect is one of expanding the velocity scale by some 9 %. For larger
phase offsets the effect increases more slowly; it is about 17 % at 8 = 20*. We do not know
at present how the offset behaves for really strong signals, so it is hard to estimate how
large the maximum error is in the PMSE data set. As the S/N ratio was quite frequently
greater than + 30 dB (LaHOZ et al., 1989), we must suspect velocity errors of maybe 20%
or SO.

One thing to be learned from our brief test is that the EISCAT receivers are in need of a
major revision before they can be considered to be fit for handling the kind of signal
dynamics encountered in the mesosphere. In the meantime, our calibration procedure will be
extended to several power levels (we are thinking of + 7, + 17 and + 27 all3 S/N) and the
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gain calibration will be performed independently on the sine and cosine channels, thereby
enabling us to do a full corr_tion to the measured data.
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A 915 MHZ BOUNDARY LAYER WIND PROFILER

W. L. Ecklund, D. A. Carter, B. B. Balsley, and P. E. Currier

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, Colorado 80303

INTRODUCTION

The Tropical Dynamics and Climate group of NOAA's Aeronomy Laboratory

operates several large 50 MHz wind profilers in the tropical Pacific (GAGE et

al., 1988). In order to fill in the lower few km not covered by the large

radars, a small 915 MHz UHF radar has been developed to operate in a hybrid

mode with the 50 MBz profilers (ECKLUND et al., 1988a). Initial testing of the

915 MHz radar has demonstrated that this small radar will not only fill in the

lower heights in the tropics but will also be valuable as a relatively inexpen-

sive stand-alone wind profiler for the lower troposphere. The 915 MHz radar

has good height resolution and allows coverage down to about i00 meters above

the ground. It can be used (either singly or in networks) in experimental

studies of: low level transport of water vapor (for example by the trade

winds), boundary layer convergence, frontal passages, low-altitude turbulence

and vertical profiles of precipitation. Operational uses include air pollution

prediction, wind shear monitoring and temperature profiling in the RASS mode.

SYSTEM DESCRIPTION

A block diagram of the prototype UHF wind profiler system is shown in

Fig. I. The equipment to the left of the vertical dashed line is used with our

standard 50 MHz radar systems. Although all of the data presented in this

report were obtained with our standard radar controller and processor, we have

developed a new controller/processor for use with the 915 MHz radar that is

described later in this section. The equipment to the right of the dashed line

in Fig. i is located in the field (up to about 20 meters from the equipment

shelter). The transmit/receive module is located under the panel antenna and

low-level VHF signals are sent between the module and the shelter via inexpen-

sive coaxial cable. The antenna is a microstrip design that allows the antenna

to be made of thin (2 cm thick), rugged 91 by 91 cm panel-like modules that are

easy to transport and that can be mounted low to the ground to reduce ground

clutter. Additional details of the prototype small UHF radar system are given

in ECKLUND et al. (1988a).

We have developed a new PC(AT)-based controller/processor for the UHF

radar (CARTER et al., 1988) since this radar requires sub-microsecond pulses

and sampling (our 50 MHz system was limited to I microsecond) as well as a more

powerful FFT processor. Using PC technology substantially reduces the cost of

the controller and processor so that the complet,_ UHF radar is relatively

inexpensive. Operating parameters are entered from the keyboard into set-up

screens displayed on the monitor. The system is very flexible and easy to

operate.

RESULTS

The prototype UHF radar was initially operated in Colorado for brief periods in

the2summer and fall of 1986. This unit had a power-aperture product of only 2
W-m but was usually able to obtain useful returns (at 150 meter resolution) up
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Fig. I. Block diagram of the small UHF wind profiler.

to 1 to 1.5 km under clear-sky conditions. The prototype UHF radar was also

operated for several days at our site on Christmas Island to test its operation

i_ a tropical environment, For this test the power-aperture product was 1 W-
m . Fair weather height coverage was essentially continuous up to 1.8 km and

extended to 2.4 km for several one hour periods. Comparison with the 50 MHz

radar indicated that increasing the power-aperture product of the UHF radar to
i0 or i00 W-m- would increase the height coverage at Christmas Island to about

3 or 5 km (809 of the time) when using 150 meter height resolution. The UHF

radar was also tested in Illinois from May to July in 1988. This version of
the radar had a power-aperture product of about 20 W-m . Figure 2 shows the

distribution of maximum altitude coverage at the Flatland site (no

precipitation) for both 150 and 300 meter height resolution. The height

coverage depended on air mass and wind conditions and also on time of day.

Highest coverage was obtained in mid-afternoon, and the lowest coverage was

observed in the early morning. The UHF radar is very sensitive to hydrometeors

so that height coverage greatly increases when heavy clouds or precipitation

are present. Observations of precipitation with the UHF radar are presented

later in this report.

The first wind measurements with the small UHF radar were made in Colorado with

an antenna panel tilted 15 degrees from vertical and rotated in azimuth. The

initial paper by ECKLUND et el. (1988a) shows results obtained in clear air,

light rain and thundershower using the rotating antenna. A preliminary test of

the small radar in the tropics showed that wind profiles measured by the 915

and 50 MHz radars agreed fairly well in the limited region of overlapping

coverage, and that operation of the two radars in a hybrid mode would provide

wind profiles from near the surface upward into the stratosphere.
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In November, 1987 the 915 MHz radar was installed at Platteville, Colorado

near a portable 405 radar built by Strauch and colleagues of NOAA's Wave

Propagation Laboratory. Preliminary comparisons between the 915 and 405 MHz

radars gave r.m.s, differences in radial velocities of .26 m/s for l-minute

averages, and .17 m/s for 5-minute averages, More details of this comparison

are given in ECKLUND et al. (1988b).

Because the small UHF radar is capable of observing winds down to about

i00 meters above the ground it is well suited to studies of low-level jets

which are important in transporting water vapor and pollutants over long dis-

tances. The 915 MHz radar was operated in very flat terrain in central

Illinois during May and June 1988. Figure 3 shows an example of a low-level

jet in the meridional wind component observed during the nighttime hours. The

surface wind speed was less than 1 m/s, but the radar showed a southward wind

component of nearly I0 m/s at a height of 500 meters above the ground.

When precipitation or heavy clouds are present, the UHF radar coverage

increases dramatically. For example, during summer thundershowers in Colorado

coverage extended to over 8 km above the ground. Under these conditions the

returns from hydrometeors overwhelm the clear-air returns so that the deter-

mination of vertical air motion is not possible. However, it is still possible

to obtain profiles of the horizontal wind since the hydrometeors are advected

horizontally by the mean winds (WUERTZ et al., 1988). An example of the 915

MHz radar response to heavy clouds and rain is shown in Figure 4. For these

observations the antenna was pointed vertically, and the range resolution

Flatland Site 915 MHz Radar Vertical Velocity
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was 300 meters. Before 1200 U.T. the radar was observing continuous echoes up

to a height of 3.2 km, and as heavy clouds moved into the antenna beam the

height coverage increased to over 7 km. The downward velocity in this upper

region is on the order of 1 to 2 m/s, and is consistent with the fall speed of

snow and ice crystals. Below 3 km the fall speed increases to about 5 m/s as

the particles melt. The first rain shaft observed at about 1240 U.T. dis-

sipated before reaching below i km. The more extensive rain echoes from 1330

to 1500 U.T. resulted in less than .25 mm of rainfall as measured by an on-site

rain bucket. This example shows how strongly the 915 MBz radar response is

dominated by heavy clouds and rain.

The small IPHF radar has also been used to obtain temperature profiles by

using it in conjunction with an acoustic source (Currier et al., 1988).

Preliminary comparisons with balloon-derlved temperature profiles show good

agreement, and the only obvious shortcomings to the technique are noise pollu-

tion from the acoustic source and the limited height coverage (up to about 1 km

above the surface) due primarily to acoustic attenuation. Since the RASS

returns at the lowest altitudes are very strong, we may also be able to use the

enhanced resolution of the new PC-based controller/processor with the small UHF

radar to obtain temperature profiles with height resolution of 30 meters in the

lowest few hundred meters.

GROUND CLUTTER AND BIRD ECHOES

Although the preceedlng sections have sho_ that the small UHF profiler

can obtain hlgh-resolutlon wind profiles in the lower troposphere and can also

obtain vertical profiles of precipitation and temperature, there are several

aspects of lower tropospheric profiling that present special problems. First,

nearby objects which are visible in antenna sidelobes present problems if they

move back and forth in the wind so that a strong, near-zero Doppler signal is

generated at the lowest heights (CURRIER and ECKLUND, 1988). Under these

conditions the algorithm that determines the first moment of the Doppler

spectrum may select the strong clutter peak near zero and not the weaker (but

wanted) peak due to atmospheric scattering. This type of ground clutter is

very site specific and it may be necessary to use a clutter "fence" or struc-

ture to reduce low elevation sldelobe response at sites with nearby power

lines, trees, etc. However, at one flat prairie site (Platteville, Colorado)

ground clutter was not a problem when using an unshielded antenna.

A second problem that is unique to lower troposphere profiling wlth a UHF

radar is interference from migrating small blrds._ We observed a large increase

in spurious echoes from migrating birds on a number of nights in early May in

Illinois. After midnight the number of bird echoes decreased and were at low

levels by sunrise. On the nights with the highest number of bird echoes it was

difficult, at times, to derive the wanted clear-alr motions at the lower

heights from the 30-second average spectra. Bird. echoes decreased substan-

tially during the 2-month observing period and no longer posed a problem for

wind profiling by the middle of June. We conclude from this experience that at

some sites during peak bird migration periods it will be necessary to do spe-

cial signal processing in order to obtain wind profiles at the lowest heights.

SUMMARY

In this report we have presented a small, portable, relatively inexpensive

UHF wind profiler. Although the height coverage of the 915 MHz radar is

limited due to its relatively small power-aperture product, we have shown that

it can obtain high resolution wind profiles from near the ground upward to 2 to

3 km depending on antenna size and transmitter power. Preliminary tests show

that the small radar performs well in the tropics and will be able to monitor

the trade winds on a continuous basis from our tropical sites. The

demonstrated low-altltude coverage (down to about i00 meters above the surface)
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showsthat the smallradarwill alsobevaluablefor monitoringthe transport
of pollutants andwatervaporby low-levelwinds. Wehavealso shownthat the
UHFradaris very sensitiveto heavycloudsandrain with the result that the
smallradarcanbeusedto determinethe heightof themelting layer andcan
also beusedto monitorthe vertical distribution of hydrometeors.Finally,
preliminarytests of the smallradaroperatedin the RASSmodeshowthat it is
possible to obtain temperature profiles up to a height of about i km with good

time and height resolution.

REFERENCES

Carter, D.A., P.E. Currier and W.L. Ecklund (1988), A PC-based radar control-

ler/signal processor, Fourth MST Workshop, 29 Nov.-2 Dec., Kyoto, Japan.

Currier, P.E. and W.L. Ecklund (1988), Ground clutter suppression at UHF by the

use of surface wind measurements, Fourth MST Workshop, 29 Nov.-2 Dec.,

Kyoto, Japan.

Currier, P.E., W.L. Ecklund, D.A. Carter, J.M. Warnock and B.B. Balsley (1988),

Temperature profiling using a UHF wind profiler, Symposium on Lower

TroPospheric Profiling, 31 May-3 June, Boulder, Colorado.

Ecklund, W.L., D.A. Carter and B.B. Balsley (1988a), A UHF wind profiler for

the boundary layer: brief description and initial results, J. Atmos, and

Oceanic Tegh,, 5, 432-441.

Ecklund, W.L., K.P. Moran, P.E. Currier, B.L. Weber, D.A. Carter and D.B.

Wuertz (1988b), A comparison of wind profilers operating at 915, 405 and

50 MHz, Fourth MST Workshop, 29 Nov.-2 Dec., Kyoto, Japan.

Gage, K.S., B.B. Balsley, W.L. Ecklund, R.F. Woodman and S.K. Avery (1988), A

trans-Pacific network of wlnd-profillng doppler radars for tropical atmos-

pheric research, Fourth MST Workshop, 29 Nov.-2 Dec., Kyoto, Japan.

Wuertz, D.B., B.L. Weber, R.G. Strauch, A.S. Frisch, C.G. Little, D.A. Merritt,

K.P. Moran and D.C. Welsh (1988), Effects of precipitation on UHF wind

profiler measurements, J. Atmos. and Oceanic Tech., 5, 450-465.



562

ECHO INTENSITY OF A RADIO ACOUSTIC SOUNDING SYSTEM (RASS)

Y. Masuda

Communications Research Laboratory
Ministry of Posts and Telecommunication

T. Tsuda, T.Takami, T. Sato, S. Fukao and S. Kato

Radio Atmospheric Science Center, Kyoto University
Kyoto, Japan

We have studied the intensity of a radio acoustic sounding system (RASS) when the
acoustic and the wind velocities are a function of altitude. Measuring temperature profiles of
the troposphere and stratosphere by using a RASS it is possible to estimate the effective
backscattering region that the acoustic wavefront and radar beam are perpendicular to each
other. The profiles of the wind and the temperature, to use the calculation, are measured by
using a Doppler radar and a radiosonde before the RASS measurement.

When the radar beam width is much larger than the angle subtended by the arc of the
acoustic wavefront of the effective backscattering region, it is shown that the intensity of the
RASS echo falls off, not only as a function of the inverse square of the range, but also as a
function of the subtended angle. The estimation of the intensity of the RASS echo from the
subtended angle agrees well with the observed results using the MU radar/RASS.

The RASS, consisting of an acoustic source and a Doppler radar, is a promising
technique to remotely measure vertical prof'fles of the atmospheric temperature (MARSHALL et
at., 1972: MATUURA et al., 1987). The RASS uses radar to receive echoes (RASS echoes)
backscattered from periodic perturbations in the atmospheric refractive index produced by an
incident acoustic pulse and to measure the atmospheric temperature from the local speed of
sound which is derived from the Doppler frequency shift of the RASS echo signal.

Naturally, the underlying assumption needed for the implementation of RASS
observation is the existence of the regions from which the radar wave is effectively
backscattered. For monostatic radar configurations, there are two necessary conditions to
receive RASS echoes. First is the condition that the radar beam must be incident normal to the
acoustic wavefront, and now an acoustic wavelength must be equal to half the radar
wavelength in order to satisfy the Bragg condition.

The effective backscattering region is defined as those portions of acoustic wavefronts
over which the radar beam is incident perpendicularly (MASUDA, 1988). It is of practical
importance for RASS observation to know how the effective backscattering region is modified
by the atmospheric wind and temperature profiles. We studied the effects of wind and
temperature on the height limit of RASS measurements.

First, this presentation shows the results of numerical calculations on the effective
backscattering regions. The numerical analyses show that the positions and dimensions of the
effective backscattering regions are strongly affected by wind and temperature gradients,
antenna aperture, and distance between acoustic and radar antennas.

Next, it shows that the numerical estimations of the height range for effective reception
of RASS echoes agree quite well with actual RASS observations carried out by using the MU
radar (KATO et al., 1984).

Finally, when the radar beam width is much larger than the angle subtended by the arc
of the acoustic wavefront of the effective backscattering region, it is shown that the intensity of
the RASS echo fails off with distance and subtended angle: the intensity is proportional to the
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inverse square of the distance and to the fourth power of the subtended angle. Observed
results using the MU radar/RASS agree well with the numerical estimations.
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LOW ALTITUDES INVESTIGATIONS AT VHF

M. CROCHET and C. BOURD]IER

LSEET, Universit6 de Toulon, UA 705 CNRS

639, Bd des Armaris, 83100 TOULON, FRANCE

INTRODUCTION

One of the main advantage$of the ST radar is its capability to obtain an

extended coverage in altitude both for operational and research purposes.

High altitude measurements are necessary to investigate the upper level jet,

the tropopause and the lower stratosphere while low altitude measurements are

required for low level jet and boundary layer studies and to obtain the

continuity with measurements from other techniques (sodar, ground net-

work ...). High altitude coverage is obtained at VHF by increasing the mean

power-antenna area product and using coding to improve the signal to noise

ratio. Low altitude measurements are usually much more easy at UHF (ECKLUND,

1986) than VHF. The combination of the advantages of VHF radars (high

altitude measurements, tropopause detection) and UHF radars (low altitude

measurements, high resolution) has been taken in consideration to develop

hybrid UHF/VHF radars (French INSU-METEO radar at 45/961MHz, NOAA radar at

50 MHz/I GHz, this issue). The 403 MHz operational profiler is supposed to

cover a large altitude range but will probably not detect the tropopause and

will be sensitive to precipitations. So, an hybrid solution seems to be the

more relevant at least for research purposes :

- for a VHF/UHF system, progress towards low altitude at VHF will be useful

in order to extend the altitude range of simultaneous measurements at the

2 frequencies or to use a mini UHF radar,

for a lower cost system a possible solution is to use an hybrid bipower VHF

system.

VHF OBSERVATIONS AT LOW ALTITUDES

Since VHF ST radars are operating, it has been very difficult to obtain

measurements both at very low and very high altitudes. The usual minimum

altitude was around 2 km with some variations of this minimum according to

the system and the site (ECKLUND,1986).

The main problems at low altitude are related to :

the switching time of the TR system,

the receiver recovery time,

the internal reflections in cables, switches and antennas,

the clutter from the ground, building, power lines, sea, trees, mobiles.

Most of these effects are proportional (or related) to the high power

necessary to get high altitudes measurements and it seems reasonable to use a

low power system to improve the measurements at low altitude as already shown

with the french ST radar in 1984-1985 during atmospheric or oceanographic

investigations (ECKLUND,1986).

Two solutions have been successively explored with the low altitude sys-

tem of the Provence radar :



565

i) a fast pin diodeTRadaptedto the lowpeakpowerof 3 KW(ECKLUND,1986)
or 400 wattswith a minimumsystemrangeof about500meterswhentransmit-
ting in a dummyload,

ii) a systemusing a classical hybrid junction (insteadof the active pln
diodeTR)with a transistorized amplifier of 400 watts (Fig. i).

array

p_:_er

hybrld

junot ion

I

pre_ec_g [
oirouit

I
I " Ir _O_VQIr

BI

Fig. I - Schematic of the low power system using an hybrid junction with a

50 _ dummy load instead of a pin diode TR

EXPERIMENTAL RESULTS

The second system with the hybrid junction has been set up very recently

(october-november 1988) at the new LSEET radar station of Tourris near

Toulon. Due to the hilly environment of the station, this location is proba-

bly not the most favourable for low altitudes soundings and future

improvments can be expected in flatland conditions has observed previously in

the Rh6ne Delta.

The 400 watts peak power amplifier is very compact (10xlO cm 2) and

reliable with possible duty cycles from 1 to 20%; it has been used in two

configurations :

i) Low altitude observations

With a pulsewidth of 1 microsecond and a 3% duty cycle (6 watts trans-

mitted to the antenna and 6 watts to the dummy load), it is possible to

measure winds down to 600 meters (Fig. 2) without ambiguity and until

450 meters by Doppler continuity even if saturation effects are generating

symmetrical echoes.

It has to be noted that these results are obtained with an antenna beam

pointing 15 ° off the zenith with h = 0.96 r . As the minimum altitude is

range dependant, it would be possible to measure winds around an altitude of

250-300 meters at the same ranges and an antenna beam pointing 60 ° off the

zenith.
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Fig. 2 - Low altitude observations with

150 range resolution, 3% duty cycle

(6 watts transmitted power) and Doppler

observations down to 600 or 300 meters

Fig. 3 - Highest altitudes observed

with 20 watts transmitted power

(1200 m range resolution, 10% duty

cycle) and Doppler observations up

to 8000 meters.

ii) Higher altitude with the small radar system

For small budgets or for easy transportable radars it would be interes-

ting to know the maximum altitude using the same system with other pulse

widths and duty cycles. Some preliminary conclusions can already be deduced

from the results (Fig. 3) obtained at 8 microseconds and a 10% duty cycle; in

these conditions, observations can be performed until about 8000 meters.

DISCUSSION AND CONCLUSIONS

Near zone effects of the antenna have to be taken into account in velo-

city and C 2 measurements accuracies at low altitudes. These effects will

decrease if the beam is pointed 60 ° off instead of 15 = off the zenith.

Further investigations in different conditions (orography, antenna size,

antenna type, beam direction, level of peak power, type of duplexer, pulse

width...) are still necessary in order to clearly identify the extreme limits

of the system and the best configuration.

An operational system can be considered for low budget organizations

with a time sharing by the 2 high and low power systems of the two perpendi-

cular arrays (for coco antennas). Simultaneous soundings in perpendicular

directions seem possible without decreasing of the time resolution.

Simultaneous investigations at low altieude by low power VHF radar and

UHF radar have to be made simultaneously in order to study the effect of

precipitations on wind measurements and to investigate precipitations at

2 different frequencies using complementary advantages of both systems.
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Signal Processing and Data Analysis in Middle Atmosphere Radar

Prabhat K. Rastogi
Electrical Engineering and Applied Physics Deparunent

Case Western Reserve University, Cleveland, Ohio 44106

Abstract

Use of signal-processing and data-analysis methods in radar studies of

middle-atmospheric motions is examined. Detection of weak Doppler-shifted
signals from thin atmospheric regions in a noise background requires an
optimum receiver. It is shown that the basic radar signal-processing
operations implement an optimum receiver in successive stages using
matched-filter, correlator, and filter-bank structures. Effectiveness of
coherent integration in reducing high data rates, and as an efficient but crude
low-pass filter, is discussed. Use of noise-like binary phase codes and
decoding in improving range resolution is outlined. It is emphasized that
decoding and coherent integration operations can be interchanged only for a
nearly stationary medium. Spectral analysis of radar signals using time-

averaged periodogram implements an optimum filter bank for detecting
weak Doppler-shifted returns. Methods of reducing undesirable artifacts in
spectral analysis of nonstationary signal components, using windows and
trend removal, are discussed. Estimation of signal parameters through
spectral moments and least-square estimation is reviewed. Finally, simple
data-editing methods are outlined for suppressing outliers and interference.

1. INTRODUCTION AND SCOPE

The use of high-power VHF and UHF radars is an established method for
monitoring the dynamical processes in the middle atmosphere. These radars
detect weak, turbulence-induced, refractive-index fluctuations over parts of
the mesosphere, stratosphere and troposphere, and monitor their bulk
motion by measuring the very small Doppler shift of the received signal. In
view of their altitude coverage, these radars are also collectively referred to
as MST radars [Balsley, 1981; Rrttger, 1984]. The received signals are often
weaker than a picowatt, and their Doppler frequency shifts are as small as
N10-9 of the radar frequency. Physical parameters of interest viz. strength of
refractive-index fluctuations (C, 2) and the energy-dissipation rate (e) due to

turbulence, bulk velocity (v) of the medium along the radar axis, and spread
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of this velocity (av) can be derived from the low-order moments of power

spectra of received signals. Turbulence parameters (On2 and e) can only be
inferred within the framework of a suitable scattering model [see e.g.
Ottersten, 1969a,b; Hocking 1985; Rastogi et al. 1988]. Time-series analysis
of the derived parameters provides information on atmospheric wind and
turbulence fields, wave continuum, and instabilities [R6ttger, 1987; Fritts

and Rastogi, 1985].

Dynamical processes of interest have time scales of at least a few minutes to a
few days. Data rates in middle-atmospheric radar experiments, however, are
typically 0.5 Mbyte/sec. It is, therefore, desirable to carry out as much signal
processing as possible in real time to reduce the data rates. The aim of basic
real-time signal processing operations is to obtain acceptable time-averaged
estimates of power-spectnma density (psd) or autocorrelation function (acy)
of atmospheric echoes in presence of noise, ground clutter, and interference.
These estimates are often required with a 0.1-1 km range resolution, at 0.5-5
min time intervals, and at ~100 or more ranges for one or more radar beam
directions. Subsequent off-line data analysis includes spectral parameter
estimation, and time-series analysis of these parameters. Off-line analysis of
stored data may use non-causal or physically nonrealizable algorithms.

The first middle-atmosphere radar experiments at Jicamarca [Woodman and
Guill6n, 1974], while limited in on-line computations, used the slow fading of
atmospheric signals and innovative computational shortcuts to estimate the
low-order spectral moments at some ranges. Parallel array processors or
specialized computational hardware attached to a host computer can now
obtain time-averaged signal spectra at a few hundred ranges with nearly a
thousand-fold reduction in data rate. These enhanced capabilities inevitably
produce larger volumes of data, that can be organized as a data base.

In this paper, the routine signal processing and data analysis methods in use
with MST radars are examined. This review supplements those at earlier
workshops [Farley, 1984; Rastogi, 1983a, 1986]. Only the salient methods
viz. optimum-receiver implementation, signal integration, coding and
decoding, spectral analysis, spectral moment and parameter estimation,
automated data editing, and analysis of power-law spectra are discussed at
length. Signal processing algorithms depend on radar frequency, antenna
size and pointing direction, transmitter power, altitude, terrain,
meteorological conditions and interference sources, and are limited by on-
line computing resources. Data analysis methods depend on analysis
objectives, models, the amount and quality of data, and available
computational resources. They often entail considerable exploratory and
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graphical analysis [Tukey, 1977; Chambers, 1977; Cleveland, 1985; Press et
al., 1986].

First, the optimum receiver implementation in successive stages of radar
signal processing is discussed in Section 2, and the nature of radar signals is
outlined. Coherent integration of sampled receiver output efficiently
implements a crude low-pass filter as shown in Section 3. Its effectiveness in
reducing data rates is emphasized. The use of noise-like binary phase codes
and decoding for improving range resolution is described in Section 4.
Problems in combining coherent integration with decoding are stressed, and
reasons for pulse-by-pulse decoding are delineated. Classical periodogram
analysis and spectral-moment estimation to derive the key parameters in
radar experiments are discussed in Section 5. The effect of a non-stationary
component with application to ground clutter suppression and analysis of
velocity data with power-law spectra is also considered here. Alternative
spectral estimation methods using autoregressive and maximum entropy
models are briefly mentioned. Automated data editing methods based on
sorting are outlined in Section 6. Their use in removing outliers and for
suppressing interference components in signal spectra is discussed. Finally,
the impact of enhanced and affordable computational resources on signal
processing and data analysis techniques is examined in the concluding
remarks in Section 7.

2. RADAR SIGNAL PROCESSING AND MATCHED FILTERING

The signal processing operations in a basic middle-atmospheric radar
experiment can be summarized with reference to the block diagram of
Figure I. The radar transmitter is excited by a periodic impulse train. The
transmitter response to an impulse is a narrow pulse with envelope p(t)
modulated by a carrier signal at the radar frequency fo. This pulse is radiated
by the antenna along the radar beam as an electromagnetic wave-packet.
Monostatic radars share the same antenna between the transmitter and the

receiver. A duplexer is used to disconnect the antenna from the transmitter
after the pulse p(t) has subsided, and to connect it to the receiver. The
electromagnetic wave packet, as it sweeps along the radar beam, is scattered
by atmospheric refractive-index irregularities. A small part of the
electromagnetic energy also leaks through the antenna sidelobes and is
reflected by ground targets. Atmospheric and ground returns from a distance

r are received at a range delay ~2r/c, where c is the free space speed of light.
The received signal also comprises a noise component and unwanted radio
interference. The scattered signal is Doppler shifted by a frequency 2v/c for
irregularities moving along the radar axis with a speed v towards the radar.
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The receiver input is therefore complex, with components that are in phase
and in phase quadrature with the carder signal.

The received signal is mixed with the output of a phase-stable local oscillator
to obtain an intermediate-frequency signal that is first amplified, and then
coherently demodulated to recover the complex envelope of the received
signal at the receiver output. The receiver output is uniformly sampled in
range delay, and these samples are digitized. As successive impulses are
applied to the transmitter, new sets of digitized range samples become
available. The fading time of atmospheric signals is usually very much larger
than the interpulse period between successive impulses. It is therefore
desirable to coherently integrate the complex digitized range samples over
several transmitted pulses. Blocks of coherently integrated samples are used
to form time-averaged estimates of psd at each range delay. Suitable break-
points for off-line analysis are indicated in Figure 1. It usually entails
estimation of spectral-moment parameter and data analysis of their time
series. It is desirable, however, to display at least crude estimates of low-
order spectral moments in real time.

I Transmitter _p

t t
Impulse _

Train

Duplexer : Tx. & Rx. Antenna

__ AtmosphereGround

Range Delay Noise and
Interference

f_

y___ Receiver _ In-Phase and
Mixer & IFA Quad. Det.

Z

Range Gating

Digitization

Off-Line Processing a _

Data / Moment _[ Spectrum H C°herentAnalysis Estimation Analysis Integration

FIGURE 1. Block diagram of signal processing operations in middle-
atmosphere radar experiments. These operations implement an optimum
matched-filter receiver for detection of weak Doppler-shifted atmospheric
returns in presence of noise, as discussed in the text. Modifications for high-
resolution experiments are shown in Figure 2. Off-line analysis can be
relegated to any suitable stage after a.
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If the pulse envelope p(t) has a duration Tp, with a peak at delay tp, then the
radiated wave packet has a spatial extent cTp, where c is the free-space speed
of light. The modulated transmitter output is of the form p(t) exp(t2gfot),

where t=4-1. For a point target _i(r-r') at range r', the range delay is t'=2r'/c,

and the antenna output is of the form et(r') o p(t-f) exp(t2n'fo[t-t']), where the

term et(r') includes the effects of attenuation due to two-way trip to and from

the target, and a is its radar cross-section. With additive white Gaussian noise

n(t) of constant power spectral density N,, the net signal y(t) at the antenna
output or the receiver input is

y(t) = s(t) + n(t) = a ot(r') p(t-t') exp(t2nfo[t-t']) + n(t) (1)

For maximum signal-to-noise ratio (snr) at the output, the optimum receiver
can be implemented either as a correlation receiver, as a matched-filter
receiver, or as a bank of narrow-band filters [Wozencraft and Jacobs, 1965;

Davenport and Root, 1958]. Ideally, the matched-filter receiver should have

an impulse response hm(t) = 13s*(t"-t), where 13is a constant, t" is a delay

parameter, and ° denotes the complex conjugate. The receiver output is then
the convolution of y(t) with hm(t). In equation (1), the term =(r') varies quite

slowly, but the target range r' is arbitrary. The impulse response hm(t) can
only be matched to the known part p(t) exp(t2rffot) of s(t) with

hm(t) = 13p*(t"-t) exp(-t2rffo[t"-t]) (2)

It is readily seen that the the signal component z,(t) in the receiver output
z(t)=zs(t)+z,(t) is

Zs(t) = s(t) ® hm(t) = _13tt(r') Rpv(t"-t+t') exp(-t2nfo[t"-t+t']) (3)

where ® denotes the convolution, and Rpp(t)=E[p(t')p'(t+t')] is the
autocorrelation function of the pulse envelope p(t) defined here as an
expectation. Since p(t) is deterministic, Rpp(t) is evaluated as a time integral.
The output reaches a peak magnitude at t=t"+t'. The term t" is usually applied
as a correction to offset the delays in the transmitter and the receiver.
Therefore replacing t by t-t", equation (3) is modified to

Zs(t) = _13e_(r') Rpp(t'-t) exp(-t2nfo[t'-t]) (4)

and the output reaches a peak at t=t', the range delay corresponding to the
target. It should be noted that errors in delay correction t" can produce
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uncertainties in both the range r' and in the estimated target cross-section o.

The noise component zn(t) has a psd No=fl2NnlHm(f)12 over the receiver

bandwidth B. Since the receiver impulse response is matched to p(t), the
receiver bandwidth has a nominal value B~(1/Tp).

For a point target at an initial range ri moving with a finite speed or range
rate v_=dr_'/dt, the range r( and range delay ti' increase linearly with time as
ri'= ri+vit and ti'= 2(ri+vit)/c = ti+(2vJc)t. If the target speed vi is small, then

the term o_(ri') can be replaced by a(ri) and Rpp(ti'-t) by Rj,p(ti-t). The phase
term is modified, however, and equation (4) becomes

Zs(t) = ol3 ot(ri) Rpp(ti-t) exp(-t2_fo[ti-t]) exp(-t2_fo[2Vi/C]t) (5)

where fo(2vyc) -- F_ is the Doppler shift due to the point target. Since the
target speed vi is not known in advance, it is not possible to design a single
matched filter to estimate the Doppler shift F_. The transmitter is excited,

however, by a periodic impulse train of the form :r,kS(t-kTi) of period TI. It is
possible, therefore, to apply successive samples zdk] = z,(t-kT0 to a bank of
narrow-band filters, in lieu of a matched filter, for optimal detection of the
Doppler shifted signal. This is readily accomplished by subjecting blocks of
these samples to spectral analysis, which yields the time-averaged psd in
terms of Fourier transform Z,(f) of z,(t)

P,[m] = <Z_[m] 7_,'[m]> (6)

as a function of the frequency index m as discussed further in section 5. The
angular brackets <> denote time averaging.

The atmospheric medium contains a continuum of irregularities. A full
analysis of radio-wave scattering from such media may be found e.g. in
Booker (1956), Tatarski (1971), and Monin and Yaglom (1975) and is
required for estimation of turbulence parameters. For illustrating the signal-
processing aspects, however, it suffices to regard the medium as a collection
of many point targets. "me received signal at a range delay to=2ro/C is then

Zs(to) = Y_{o13ct(ri) Rpp(ti-to)} exp(-t2_fo[ti-to]) exp(-t2rffo[2Vi/C]to) (7)
i

Only the point targets near range ro, with range delay within the correlation
time of the pulse envelope p(t), weighted by Rpp and the slowly changing

function c_, contribute to the signal z,(to). Each terna in equation (7) may be

represented in an Argand diagram at frequency fo, as a phasor with distinctly
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identifiable amplitude, phase, and rotation frequency (the Doppler shift Fi).

For targets that are spaced Xo/2 apart in range, the phasors are in phase and
their contributions to z_(to) add constructively. The radar thus acts as a

spatial filter on refractive-index fluctuations in the medium, and is sensitive

primarily to fluctuations at the Bragg scale [_.o/2] along the radar axis.
Contributions from targets on thin sheets transverse to the radar axis also add
constructively within a Fresnel zone of the antenna radiation pattern. These
target configurations produce coherent, aspect sensitive signals frequently
observed at near vertical incidence [R6ttger and Liu, 1978; Rastogi and
R/Sttger, 1982; Woodman and Chu, 1989].

For arbitrary configurations of a large number of point targets, the sum
zs(to) of phasors in equation (7) approaches Gaussian statistics due to central
limit theorem [see e.g. Papoulis, 1984]. If the target velocities vj have a mean

value Vo and a standard deviation o,, then once again by the central limit
theorem, the psd of zs(to) defined in equation (6) tends to a Gaussian shape

with parameters related to Voand o,.

The net receiver output z(to) at a range delay to=2rJc may then be expressed
as the sum of an atmospheric component z_, noise z_,, ground clutter zg, and
interference zi as

z(to) = {_s(to) + t rls(to)} exp(-12_fo[2vo/c]t) + z,(to) + zg(to) + zi(to) (8)

The complex low-pass random process _(to)= _+(to)+m+(to) is related to the
characteristics of turbulence at range ro through physical models, and to
radar parameters. The noise component is due to an effective system noise

temperature 0s. In VHF radars the average 0s is -290 _.o2 K (with _.oin
meters) due primarily to cosmic noise, but at UHF it is of the order of -200 K

or less. The total noise power is of the order of 132ka0sB where kB is the

Boltzmann's constant. The ground clutter is due to a slowly varying phase
component from refraction along multiple paths to terrain through the
antenna sidelobes. The fading rate of ground clutter is negligible at VHF, but
significantly (~10 times) larger at UHF. Detection of Doppler shifted signal
components in the presence of strong, fading ground clutter poses some
difficulties as discussed in Section 5. Interference from inadvertent

transmitters in the receiver passband B about the radar frequency fo is
usually unavoidable. Methods for removing interference in postprocessing of
psd estimates are discussed in Section 6.

The range resolution is obviously limited by the correlation width of the

pulse envelope p(t) and is of the order of cTp/2. The requirements on signal
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detectability and range resolution are contradictory. To detect the weak
atmospheric component zs(to) in the presence of unwanted components in

equation (8), the transmitted signal duration Tp should be as large as possible
within the peak and average power limitations of the transmitter. This is
possible only by increasing Tp, but thereby impairing the range resolution.
The range resolution can be improved by imposing a noise-like phase
modulation on the transmitted pulse, derived in practice from low
autocorrelation binary sequences or codes. If the pulse envelope is phase
modulated at subintervals Tb then the receiver bandwidth B should be

augmented to 1]Tb. The structure of the optimum receiver is now modified at
the point a in Figure 1, and is illustrated in Figure 2. To permit flexibility in
the use of phase-coded pulses, the optimum receiver is implemented as a
correlation receiver, in which the range gated receiver output is cross-
correlated with delayed replicas of the transmitted code. It is possible, even
advantageous, to use different codes A,B,C... etc. and to accumulate the
decoded signal for these. The use of phase codes and decoding in middle
atmosphere radar experiments followed their use in incoherent-scatter
studies [Ioarmidis and Farley, 1972; Schmidt et al. 1979; Woodman, 1980 ].
Signal coding and decoding methods are discussed further in Section 4.

In summary, we note that the signal processing methods used with middle
atmospheric radars attempt to optimize the detection of weak Doppler shifted
signals from thin sections of the atmosphere, wi.th additive white Gaussian
noise. The optimization is attained in successive stages making use of
matched-filter, correlation-receiver, and filter-bank structures.

_ Transmitter ]

Phase Mod. _-]

Binary Codes[ [
Generator ,

A,B.C ......I
Impulse train

R .goS mplos l
Jl LI

Integrator

(In Range)

DECODER _ CROSS-CORRELATOR

__ Coherent la

Accumulator _
A, B, C ...... I

FIGURE 2. Block diagram of a high-resolution radar experiment using
phase modulation with low-autocorrelation binary sequences. The optimum
receiver for phase modulated signals is implemented as a correlator which
precedes the coherent integration block at point a in Figure 1. With
complementary code pairs, it is often possible to switch the order of coherent
accumulation and decoding.
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3. SAMPLING AND COHERENT INTEGRATION

The receiver output z(t) in pulsed Doppler radarexperiments is a complex
random process, sampled at several disparate time scales. In simple radar
experiments, the smallest time scale is the pulse width T o. The range
sampling interval Tr is comparable to Tp. The modulated pulses are
transmitted at a pulse-repetition interval TI. In high-resolution experiments
with phase coding and decoding, the pulse is also phase modulated at regular
subintervals Tb, called the baudlength. A suitable value for Tr is then Tb.
These time scales and their typical values are shown in Table 1.

TABLE 1 : Typical Time Scales in Middle Atmosphere Radar Experiments

Time scale Simple Experiment Coded Pulse Experiment

Baud Length 1 us

Pulse length 10--us 32 us*

Range Sampling Int. I0 us 1 us

Inter Pulse Period 1 ms 1 ms

*for 32-bit codes. 1 ms = 0.001 second. 1 us = 0.001 ms.

The sampled signal z[j,i] depends on the range index j, and the pulse index i.
The sample time for these indices is given by t=(i-1)T[ + tmin+(j-1)Tr, where
train is the minimum range delay. In simple radar experiments, samples zj[i]
for a given range index j are available at interpulse period TI. The
corresponding Nyquist frequency interval of +(2TI) -1 is usually many times
larger than the maximum expected Doppler shift of atmospheric signal
component Zs(t).

Coherent integration provides a computationally effective means of
shortening the Nyquist frequency interval so that it is better matched to the
expected Doppler shifts, and for reducing the data rate. It comprises two

steps. First, a moving sum of zj[i] is obtained by accumulating or integrating
it over I samples. Next, the moving sum uj[i] is re-sampled every Ith point to
obtain the coherently-integrated samples uj[k] with time spacing T=ITI. The
moving sum
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uj[i] = T_ {zj[i] + zj[i-1] + zj[i-2] + ..... + zj[i-I+l] } (9)

is efficiently computed through the recursion uj[i] = uj[i-1] + zj[i], with the
initial condition uj[0]---0, executed I times. The final result is optionally scaled
by TI. The moving-sum operation is equivalent to applying a filter with the

frequency response

H(f) = Uj(_ =TI { 1 + e -t toni', +e-t 2_rZT_+ ..... + e-t 2ntTl-1]v_}
zj(f)

(10)

to the samples zj[i]. Summation of the series in equation (7) gives

H(f) = e-t 2ntIl-l]TLTI sin(rcflTi)
sin(m"Tt)

(11)

and involves the Dirichlet kemel. The re-sampling operation implies a new

Nyquist frequency interval of +(2T) -1 which is I times narrower. The
response IH(f)12, which shapes the psd, approximates a crude low-pass filter.
It falls off by ~4 dB near the edges of the Nyquist interval [Rastogi, 1983b].
The signal power for echoes with large Doppler-shifts should be corrected
for this fall off. Frequency components outside the Nyquist interval +(2T) -1
are weighted in power by IH(f)[ 2 and aliased or folded back into it. Since
IH(f)l 2 is periodic, signal components with an unexpectedly large Doppler
shift, e.g. from an aircraft, are not always completely rejected in coherent-
integration.

It is instructive to examine the effect of coherent integration on noise. For
convenience the multiplier TI in equation (9) is taken as unity. The received
signal z(t) is merely the sum of zs(t) and noise z,L(t) in the absence of other
components. The noise z,(t) is originally bandlimited by the receiver
bandwidth 13,matched to (Tp) -1 or (Tb) -1, whichever is larger. On sampling at
the pulse repetition interval TI, z,(t) is aliased many times over into the
Nyquist interval +(2TI)-L but the total noise power is unaltered. After
coherent integration over I samples and resampling, the noise power
increases 1-fold, and the Nyquist interval becomes +(2T)-L A consequence
of this two-fold aliasing is to whiten the noise psd, even if it is originally
nonwhite. Alternatively, if we regard the well-correlated signal zs(t) as a
constant s, and z_(t) as a zero mean process with variance _2, then the pre-

integration snr in samples of z(t) is s2/cr 2. When I samples of z(t) are

integrated, the noise variance becomes Icr2 and signal power is (Is) 2. Hence

the post-integration snr, Is2/c_2, is improved by a factor I. It should be

stressed that this does not imply improved detectability of spectral peaks,



577

barely above the noise level, in the Nyquist window +(2T) -1. This is because
the psd of both the noise and signal components is amplified by the same
factor IH(f)l 2.

The simplest modification to coherent-integration is the use of a constant la<l

in the recursion uj[i] = uj[i-1]+gzj[i]. Then

uj[i] = T1 {zj[i] + lazj[i-l] +g2zj[i-2] + ..... + btl-lzj[i-I+l] } (12)

The frequency response H(f) can be readily shown to be

sinh(rclTi[v+jf])
H(f) = e-=tl-llvT_.e - t_allqlm. TI. sinh(rcTi[v+jf])

(13)

where v= -ln(la)/2n has been introduced for simplicity. The modified filter
obtains sum over past samples with exponentially decaying weights. By

selecting a large I, and a suitable value of la, a sufficiently narrow filter
response is obtained which may be useful in estimating the ground-clutter

component. Otherwise, the response is slightly modified from the I.t=l case.

Any further improvement in the frequency response IH(f)12 would require
filtering of past samples stored in a pipeline or buffer. This adds
considerably to on-line computing requirements. An interesting alternative is
provided through a bank of identical analog low-pass filters, which do not
suffer from aliasing [Clark and Green, 1988].

For a radar pointed at 15 ° from zenith, and maximum horizontal wind of 70
m/s, the maximum Doppler shift is ~6.7 Hz at VHF and -57.3 Hz at UHF.
Only a fraction of the available Nyquist frequency interval of +500 Hz for
TI=I ms contains useful information about atmospheric motions. Suitable
values of I are then 75 for VHF, and 8 for UHF.

4. SIGNAL CODING AND DECODING

The detectability of point targets is optimized when the receiver impulse
response is matched to the transmitted pulse shape p(t) at the radar frequency

fo. The signal at receiver output is the same as the acf Rpp(x) of p(t), except
for a scaling factor. For simple pulse shapes, the range resolution Ar in often

set by the pulse width Tp as Ar~cT0/2. To map the structure of an extended
target, it is desirable to keep To small. Yet, detectability of weak targets is
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improvedby keepingTpaslargeaspossiblewithin thepeakandaverage
powerlimitationsof theradartransmitter.Theserequirementsfor outlining
thestructureof weakextendedtargetsarecontradictory.

Thepoint-targetcasesuggests,however,that therangeresolutioncanbe
improvedby usinganoise-likepulseenvelopep(t) sothatR_(x) approaches
an impulse.Theproblemsto becircumventedin thisapproacharetwofold.
First, the transmitterpower,hencetheamplitudeof p(t), shouldbe kept
nearlyconstantover its durationT0. This necessitatesthe useof phase
modulation.Second,thephasemodulatingsignalis limitedindurationbyT0,
andto avoidcomplexityin thereceiveronly a fewphaselevelsshouldbe
allowed.Theseconsiderationshaveledto theuseof shortbinary sequences
or codeswith an impulse-likeautocorrelationfunction [Turyn,1968]for
phasemodulationof thetransmittedpulse.Theimprovedresolutionin range
isobtainedonlywith theuseof amatchedfilter, i.e.afterthereceiveroutput
is cross-correlatedor decodedwith themodulatingsequence.Phasecoded
binarysequenceswerefirst introducedin atmosphericradarapplicationsfor
D-regionelectrondensitymeasurementsat Arecibo[IoanniddisandFarley,
1974].MoresophisticatedcodeswerelaterusedwithMSTradars[ Schmidt
etal. 1979;Woodman,1980,SulzerandWoodman,1984].

A singleamplitudeandphasemodulatedpulseat theradarfrequencyfo in
responseto animpulse_i(t)maybeexpressedasp(t) exp{t0(t)} exp{_2nfot}
wherethemodulatingtermsp(t) and0(t)areof durationT0.TheintervalTo
issubdividedintoK smallersubintervalsorbaudsof durationTb.Thephase
term0(t) is derivedfromaK-bit binarysequence{bk}.Overeachbaud,the
transmitterphaseis shiftedby0°/180° orby+90 ° depending e.g. on whether
bk and bk-1 are same or different. The receiver bandwidth B must now be at
least as wide as 1/Tb. The receiver output is sampled in time at intervals Tb,
and is cross correlated or decoded with the sequence {bk}. The cross-
correlator output closely resembles the acfof the sequence {bk}. For suitable
binary sequences, the autocorrelation function Rb[k'] should approximate an
impulse in that Rb[0]=K and JRb[k']lN0 for k';_0. Such sequences are called
low autocorrelation binary sequences. The effective resolution in range is
then ~cT_t2. This entire set of operations is repeated at the pulse repetition
interval TI. It is often advantageous to use different binary sequences for
encoding successive pulses as elaborated later. The effect of finite receiver
bandwidth is to introduce a small delay and loss in the decoder, which must
be corrected for after decoding. Table 2 shows some of the simpler codes that
have been used with middle-atmosphere radars.
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TABLE 2 : Low Autocorrelation Binary Code Sequences For Radar Applications

Barker 2 4+ or +-

3 ++-

4 ++-+ or +++-

5 +++-+

7 +++--+-

Ii +++---+--+-

13 +++++--++-+-+

Cc_plement ary 2 ++

+-

4 +++-

++-+

8 +++-++-+

+++---+-

16 +++-++-++++---+-

+++-++-+---+++-+

32 +++-++-++++---+-+++-++-+---+++-+ (32A)

+++-++-++++---+ .... +--+-+++---+- (32B)

acf(32A) :32-1 0-i 0-5 0+3

aof(32B) :32+1 0+i 0+5 0-3

0+3 0+3 0+7 0-I 0-3 0+5 0+i 0+i 0-3 0+5 0+i 0+I

0-3 0-3 0-7 0+I 0+3 0-5 0-I 0-i 0+3 0-5 0-I 0-i

A familiar example of low-autocorrelation binary sequences is the set of
Barker codes with the property that IRb[k']l<l for k'_0. Barker sequences are
known only for lengths K=2,3,4,5,7,11 and 13 [see e.g. Cooke and Bemfeld,
1967]. There are strong reasons to believe that Barker sequences do not exist
for K>13 [Turyn, 1968]. The highest correlation sidelobes (k'_0) for the
length-13 Barker code are 22.2 dB below Rb(0). This sidelobe level can be
reduced to -43.8 dB with a 3-term inverse digital filter [Rihaczek and
Golden, 1970].

Pairs of binary sequences A={ak} and B={bk} are known with the

complementary property that

Ra[0] + Rb[0]=2K, and Ra[k'] + Rb[k']=0 for k'#0,

i.e. the sum of their autocorrelations exactly cancels out for non-zero lags

[Golay, 1961]. The complementary property can be extended also to sets of
binary sequences [Tseng and Liu,1972]. While complementary code pairs
and sets attain the ideal autocorrelation properties of white noise with short
binary sequences, it should be noted that the net zero correlation for k'_0 is
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obtained by cancellation of two or more usually large values. This can be
seen for the 32-bit complementary pair in Table 2. For realistic radars with
weak system nonlinearities and for a moving medium, the cancellation is far
from perfect.

If the atmospheric medium does not change significantly within an interpulse
period Tt, then complementary code pairs can provide near ideal high-
resolution performance. Indeed, the fading time of middle-atmosphere radar
signals is usually very much larger than Tl. In situations where radar signals
are coherently integrated over a duration ITI, it is possible to interchange the
order in which decoding and coherent integration are performed with a very
substantial reduction in the amount of on-line computations [Woodman,
1980]. Thus instead of transmitting I pulses coded according to the sequence
ABAB.. with pulse by pulse decoding and integration of the receiver output,
pulses coded with the sequence AAA...BBB.. may be used. The receiver
output is coherently integrated over the subsequences AAA .... and BBB ....
and then decoded. This results in an -I/2 fold saving in computations for
decoding, but it is necessary to assume that the medium is stationary for the
entire duration IT1. Otherwise, cancellation of autocorrelation values for

k'_'O is not perfect. For acceptable performance it is desirable to keep the

phase shift 2n[2vo/_] ITt < 1 radian due to an atmospheric velocity Vo.This
condition is clearly violated for Vo- 2-3 m/s or larger. Effectively, then only
a part of the sequence AAA...BBB.. contributes to the cancellation of net

rR(k') for k'_0. For moving media, the performance of coding and decoding

schemes should be examined through the fine structure of the range-Doppler
ambiguity function at small Doppler shifts [Rihaczek, 1969].

Sets of low-autocorrelation binary sequences selected at random, offer the
possibility that in their net acf ER(k'), accumulated across the set, the

sidelobes for k'_) will tend to cancel out. These quasicomplementary code
sets (qccs) were introduced by Sulzer and Woodman (1984), who found that
32-bit qccs obtained by an extensive partial computer search perform better
than complementary pairs, especially for non-linear transmitters. An

exhaustive search has been made for 32-bit qccs with near optimum
correlation properties [Rastogi and Sobolewski, 1988]. The fine structure of
range-Doppler ambiguity function for these and :several other codes has also
been examined.

Pulse-by-pulse decoding is mandatory for qccs, and is also desirable for
complementary code pairs. In a typical experirnent with 256 range cells, and
32-bit codes, nearly 16,384 multiply-add operations are required per ms for

pulse-by-pulse decoding. Multiplications between digitized multibit samples
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and the binary code sequence (+1) can be reduced to additions and

subtractions only. This requires an addition cycle time in the processor of
-61 ns, possibly less. For this reason, pulse-by-pulse decoding is currently

available only at some installations.

5. SPECTRUM ANALYSIS AND PARAMETER ESTIMATION

In the final stage of signal analysis in middle-atmosphere radar experiments,
coherently-integrated and decoded samples of the receiver output z(t) are
passed through a bank of narrow-band filters to detect the Doppler-shifted
signal component and to estimate its parameters. The filter bank is usually
implemented through spectral analysis. Signal parameters are estimated as
the low-order spectral moments of z(t), which yield the signal power, radial
velocity (v) and its spread (av). Spectral analysis of inferred velocity (v) time

series is also useful in studies of gravity-wave phenomena. Often the psd of
velocity time-series follows a power-law shape with Sv(f)-f-Y. Then the

spectral index y is the parameter of interest.

The random signal or process z(t) is assumed zero-mean, statistically
stationary, and ergodic [see e.g. Papoulis, 1984] with a signal power or
variance pz=Rz(0) and acf

Rz(x)=E[z(t) z°(t+_)l (14)

where E denotes the expectation operation. The psd of z(t) is obtained from
the Wiener-Khinchin theorem as

(15)

where 3 is the Fourier transform (FT). The psd denotes the distribution of
signal power with frequency f. The FT ZD(f) of a truncated realization of
ZD(t) that vanishes outside _+D/2 is similarly defined. The psd S_(f) can be
related to the FT ZD(f) through

S_(f) = E { limD___ 1 1ZD(f)l 2} (16)

The quantity P(f) = IZo(f)l 2/D is called the periodogram. The expectation in
equation (16) may be evaluated, by ergodicity, as a time average. Thus the
psd may also be obtained as the time averaged periodogram [Marple, 1987],
provided that D is large compared to time scales of fluctuations in z(t).
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Only discrete-time samples z[k]=z(kT) of the process z(t) are available with a
sampling interval T. This limits the maximum frequency to the Nyquist value
fN=(1/2T). For sampled signals, the FT is replaced by its discrete version
(DFT). The DFT Z[m] of a block of N samples of z[k] is evaluated at N
equispaced frequency points in the Nyquist interval :fiN, or [0,2fN). The DFT
pair is defined as [see e.g. Brigham, 1988; Marple, 1987]

N-1

Z[m] = DFT{z[k]} = E z[k] e -t2ram_ for m=0,1..(N-1)
k=0

(17)

N-I

z[k] = IDFT{Z[m]} = J-'_-" Z[m]] e÷t z'_q for k=0,1..(N-1)
N

(18)

These definitions show that both z[k] and Z[m] have a period N. The discrete
time analog of the periodogram is then

Pz[m] --_ { IZ[m]l 2] (19)

and the psd Sz(f) is evaluated by time averaging of the N-point periodograms
over M blocks. This is usually the preferred method of psd estimation as the
DFT can be quite efficiently evaluated with the fast Fourier transform (FFT)
algorithms. Some caution is warranted, however, in the use of this method as
elaborated below.

The statistical uncertainty or standard deviation op, and the average value Ixp,

of the periodogram Pz[m] are usually comparable. Moreover, the effect of
finite block length is to smear the periodogram values with the squared
Dirichlet kernel sin2(nfTN)/sin2(gfr). The contribution of a sampled-

frequency component at other sampled frequency points is thus nearly zero if
z(t) is a noise-like process. Then adjacent value of P,[m] are nearly
uncorrelated. This gives a very jagged appear_mce to the periodogram [see
e.g. Marple, 1987]. For a Gaussian noise process of total power pz=o 2, the

periodogram values Pz[m] have a X22 statistics with _p=O'p-"O'2]"I'° It follows

that after averaging over M periodograms, the periodogram is smoother and
its standard deviation is reduced by a factor _/M. Even for values of M as
small as 6, the averaged periodogram approaches a Gaussian statistics with
mean o2/T and standard deviation o2]T_/M. "File chance of observing a

periodogram value exceeding (XO'2ffF may then be obtained as
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Prob [Pz[m] > _ ] < erfc([a-1]_M) (20)

For example, the probability that a periodogram value at least 1.5 times
larger than the average will be observed after averaging over 16 realizations
is less than 0.5-erf(2)=0.023. This inequality is very useful for specifying a
threshold criterion for detectability of Doppler-shifted signal peaks over a
noise background in psd estimates.

The consequence of smoothing by the squared Dirichlet kernel is conspicuous
for a frequency component f' not exactly at the sampled DPT frequencies
m/NT. The contribution at a frequency f' is weighted by

sin2(n[f '' -f]TN)/sinZ(_[f"-f ]T)

and falls-off as ~[f'-f] -2 at frequencies far removed from f'. This effect is
most serious for signals with a strong unresolved low-frequency component,
with f<I/NT. Examples include signals z(t) containing a strong slowly-
fading ground clutter component, or velocity time series v(t) with a power-
law psd of the form ~f-_. In both cases, the assumption of a stationary random
process is invalid. This conclusion is justified below from two other
viewpoints.

An acfestimate Ra[k] can be obtained directly from a block of N samples of

z[k]. Ra[k] has triangular weights at the [2N-l] lags between +(N-1)T. The N-

point IDFT Rv[k] of the periodogram P_[m] is not usually a valid acf
estimate. It is possible, however, to obtain Rv[k] as an N-point aliased version
of Ra[k]. Only when Ra[k] is uncorrelated beyond -N/2 points, is it possible

to recover it from the N-point periodogram. Otherwise, to obtain Ra[k]

unambiguously, it becomes necessary to augment the block size to 2N points,
by adding N zeros to z[k], and then taking a 2N-point periodogram. Thus, in
presence of components of period exceeding the block length N, the standard
N-point periodogram does not yield an acceptable psd estimate.

An unresolved low-frequency component produces a large disparity between
z[0] and z[N-1]. In view of the N-point periodicity of z[k], this disparity is
equivalent to a step-like discontinuity in the time series. The frequency
response of this discontinuity in the psd estimate is ~f-2. This explains the
Lorenzian psd shape of the ground-clutter component, and at least some

velocity 'observations' with a spectral index y-2.
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The simplest method for reducing the effect of a nonstationary component is
to use the largest possible value of the block-size N and to multiply the
samples z(k) with a data window w[k] which smoothly decays to zero at the
end points. The effect of applying the data window is to reduce the step-like
discontinuity at the two end points, i.e. to render the data nearly stationary.
The frequency response IW[m]12 of the data window should decay much more
steeply than ~f-:. Since the data window weights the central part of a block
more heavily, successive blocks may be allowed to overlap. The most useful
data windows in this context are the triangular or Bartlett window, yon-
Harm window, windows with power-law response derived from the modified
Blackman window, or the near-optimal windows such as the Dolph-
Chebychev and Kaiser-Bessel windows [Blaclanan and Tukey, 1958; Harris,
1978, Marple, 1987]. Selection of a good data window, and its use, is an
important and necessary step in spectral analysis of signals with ground
clutter, and of velocity data with power-law psd. There is a small overhead
in computational effort, but it obviates round-about corrective measures in
later stages of data analysis. Alternatively, the nonstationary trends must be
estimated and removed from the time series before spectral analysis. A
simple method of estimating trends is by the running median over blocks of
N points [see Section 7]. This method is useful for long time series of
prestored data. Care must also be exercised in treating end effects. Other
algorithms for trend identification and removal may be found, e.g., in
Gottman(1981).

We now briefly mention alternatives to classical spectral analysis that are
based on a model representation of the time series [see e.g. Marple, 1987].
The coefficients h[k] of a feedback filter excited by white noise n[k] of

variance o 2 are sought such that the filter output is the random process z[k].
In the autoregressive moving average (ARMA) model, z[k] is obtained as a
linear sum of the current input, q past inputs weighted by coefficients bj for
j=l,2..q, and p past outputs weighted by coefficients ai for i=l,2..p. For this
ARMA(p,q) model, the psd Sz(f) may be represented as

Sz(f) = o2T ]B(f)12 (21)

[A(f)[ 2

where the polynomials A and B have p and q zeros. These polynomials are
simply related to the coefficients ai and bi. The ARMA(p,q) model thus
represents the psd Sz(f) using q zeros and p poles. The AR model is suitable
for representing a psd with sharp peaks, and MA model for representing a
psd with flat peaks. It is possible to overdefine an ARMA(p,q) process and
represent it in an AR(p') or MA(q') model with p'>>p and q'>>q. Whereas
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we expect the ground clutter component zg(t) to have an AR representation
with q'=l or 2, and the Doppler shifted signal component zg(t) to have a MA
representation, it is also possible to model the total signal z(t) as an AR(p)
process with several poles. The coefficients ai, (p+l) acf values of the

process z[k], and the noise variance o 2, are related through the linear Yule-

Walker equations. These equations can be solved for the coefficients ai using
a recursive algorithm due to Levinson [see e.g. Marple, 1987; Press et al.
1986]. Thus the psd Sz(f) of an AR(p) process is completely defined from
(p+l) acfvalues. The use of discrete form of the Wiener-Khinchin theorem,
through equation (15), would have required acfvalues at all lags. The order
p for the AR(p) model must be found by separate analysis.

When observations of a process z(t) are limited to an interval (0,T), classical
spectral analysis methods unrealistically assume it to be zero or periodic
outside the observation interval. Natural extensions of z(t) outside the
interval (0,T) may be sought consistent with maximizing its entropy rate.
With the process z(t) thus extended, it is possible to obtain high-resolution
psd estimates from short data sequences. The details of this method due to
Burg may be found in appendices in Haykin (1986) and Robinson and Treitel
(1980), and algorithms in Marple (1987). The maximum entropy method
(MEM) is closely related to the AR model for a Gaussian process.

The MEM and AR model have, so far, found limited application in the
analysis of middle atmosphere radar signals and data. One basic problem is
that the order p of the AR model must be found empirically for time-series
of interest. Klostermeyer (1986,1989) has used MEM psd estimates of
coherently-inetgrated ST data from the Sousy VHF radar to find the Doppler
shift and spread at low to moderate snr. It is found that these quantities are
estimated with better accuracies using MEM.

The normalized psd sz(f)=S_(f)/p_ satisfies all the properties of a probability

density function (pdf). The mean _t_l and variance Iz,a of this pdf are the first

and second spectral moments of z(t). The zeroth-order spectral moment IZ_o

of z(t) is then simply the area under S_(f), or the signal power pz. If z(t)
contains only the atmospheric component, then the first and second spectral
moments are related to the radial velocity v and its spread Ovthrough

_zl -Pz f Sz(f) df- v[Xo/2]
(22)
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_tz2='Pz [f" _I]2 Sz(f) tit'= 02 (23)
[zJ2] 2

The psd Sz(f) is fully characterized by the spectral moments gzo,gzl, g,.2 if it

has a single Gaussian peak. The effect of additive white noise _(t) is to add a
platform to Sz(f). The fading ground clutter z=(t) produces a smeared
Lorenzian peak at f-0, as discussed earlier. Corrections should be applied
either to the psd estimate or to the spectral moments to remove the effect of
these undesired components.

Just as the moments of a random variable are related to the derivatives of its

characteristic function at the origin [Papoulis, 1984], the spectral moments
can be obtained directly and efficiently from acfestimates at just one or two
lags. This method was used in the first middle-atmosphere radar experiments
at Jicamarca [Woodman and GuilMn, 1974]. Statistical errors in the acf
method of spectral moment estimation have been given by Miller and
Rochwarger (1972) and Woodman (1985).

In as much as each spectral component in the N-point psd estimate S_[m] can
be characterized by a few parameters related to its spectral moments, the
entire psd can be described by a model or transformation M with a J-point
parameter vector p. For each value p of the J-point parameter vector, the
model output M(p) is an N-point psd vector S. The problem of psd
parameter estimation may be rephrased as : Given an observed N-point psd
vector So, find a J-point parameter vector Po such that the N-point vector
M(po) is as close as possible to So. The parameter vector po should be such

that the mean square value of the N-point error vector e(po) =So- M(po), or

e2(po)=e(po).e(po), is minimum. Ideally, a global minimum in the error
surface e2(po) is sought. An exhaustive search is hopeless for two reasons.
First, we note that even for only ten parameters and ten possible values for
each parameter, the parameter space has 1010 points. Second, the error
surface e2(p) is a nonlinear function of p. The problem is solvable, however,
if a reasonably good initial guess p' of po is available, the error surface is
smooth, and a local minimum in the vicinity of p' is acceptable. It is possible
then to vary p' in small steps towards the local minimum, e.g. along the path
of steepest local gradient. Only a local approximation to the error surface is
needed at each step. Note that the model M can be as sophisticated as desired.
Details of adaptive methods available for solving this problem may be found
e.g. in Widmw and Steams (1985), Alexander (1986), and Steams (1988).
Algorithms and subprograms are available in Press et al. (1986), and Steams
and David (1988).
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Sato and Woodman (1982) have used a matrix form of the least mean-square
(lms) error method to estimate the parameter vector p from the observed psd
vector S. The parameter vector p specifies the shape of the Lorenzian ground
clutter, one or two Gaussian Doppler-shifted signal peaks, and a flat noise
platform. The model M(p) gives the acf estimate, including aliasing artifacts
with the use of periodogram. The DFT of S is then compared with the model
M(p) to find the squared error e2(p). Linearization of the model output
M(p) about an initial estimate of p can be used to solve exactly for the

increment ap required to minimize e2(p). This step is iterated with the new

parameter value p+ap, until either e2(p) stabilizes or is sufficiently small.

Additional comments on the lras method may be found in Woodman (1975).
It has been extensively used for parametrizing UHF radar data at Arecibo.
The Ires method is extremely computation intensive. The only caveat in its
use is that, unlike incoherent-scattering from the ionosphere, the model
M(p) lacks a sound theoretical basis.

6. DATA EDITING AND INTERFERENCE SUPPRESSION

Sampled time series z[k] of experimental data are often contaminated with
outliers or bad data points that do not belong with the rest. A similar problem
arises in psd estimation of radar signals in the presence of radio interference
localized in time and/or frequency. There is usually insufficient information
on outlier statistics and their occurrence. The only justifiable criteria for

detecting relatively sparse outliers are, (i) outliers deviate substantially from
the local statistics, and (ii) their value(s) violate some underlying physical
model. All outlier detection schemes erroneously reject some good data
points and accept some bad ones. The probability of these errors should be
small for a good scheme. The situation is quite similar to communication in a
noisy environment [Wozencraft and Jacobs, 1965]. Statistically rigorous
methods for treatment of outliers may be found in David(1970), Tukey
(1977), and Barnett and Lewis (1978). A simple algorithm based on order
statistics is outlined below.

To decide whether a data point z[k] is an outlier, N samples in the vicinity of
the index k are examined. These samples are first sorted by their value in an
ascending or a descending order. Nx values at the top and Nx values at the
bottom of this list are excluded, for some x<<l. The sample mean mz and
sample variance sz2are found from the remaining N(1-2x) points in between.
Now a quantity y is selected such that the probability that a sample value lies
outside (mz_+ysz) is less than (l/N). The point z[k] is classified as an outlier if
it falls outside (mz+ysz). The choice of y is best illustrated with an example.
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Suppose N=16, and x=0.125. Then mz and szare found from 12 samples, by
excluding the two highest and the two lowest values. The distribution of z[k]
is unknown. Use of distribution-independent Tchebycheff inequality [see e.g.
Papoulis, 1984] gives y as _/N=4 or more. This is a stringent criterion for

detecting outliers. On the other hand, for a Gaussian distribution of z[k]
tables of error function indicate that y should be ~1.9 or more. A value of y
near 2.5 may be quite suitable, but its validity should be checked with a visual
inspection of the time series and detected ou_ers. Exploratory data analysis
with several values of parameters N, x and y, using real and simulated data, is
often required. This method has been successfully used for automated editing
of long sequences of velocity data from the Poker Flat radar [Bemra et al.,
1986].

The effect of outliers on time averages and other statistical quantities can be
quite significant. The sample mean mz and sample variance sz2 used above,
by excluding few lowest and highest values, are relatively unaffected by
outliers. Accordingly, median is a more robust indicator of average behavior
than the sample mean. Running median evaluated at different time scales, i.e.
for different N, is a reasonable indicator of trends in data.

Editing method discussed above can also be applied to psd estimates for
removal of sporadic interference localized in frequency and time. A very
simple method of psd averaging with interference removal is based on two
psd estimates Sl[i] and S2[i] that are sufficiently close in time to have nearly
the same atmospheric and noise components. Some values of frequency
index in either Sl[i] or S2[i] may be contaminated with interference. The
average psd estimate formed as

So[i] =23-{(Sl[i] + S2[i]) - ISl[i] - S2[i]l } (24)

is independent of interference. In this method, the noise variance of So[i] is
larger than that for either $1 or $2. Alternatively, So[i] may be obtained as the

point-by-point median of several psd estimates at closely spaced times. These
methods have been found useful in analysis ofpsd estimates at Millstone Hill.

Finally, we note that in data analysis of stored time-series, samples on either
side of a data point are available. This is in conlrast with real-time signal
analysis where 'future' samples are unavailable. Access to 'future' values in
stored data makes it possible to use non-causal or physically unrealizable
signal processing algorithms. In applications such as data smoothing, e.g., it
is possible to obtain a zero phase-shift filter by apptying any filter once in the
forward and then in the backward direction.



589

7. CONCLUSION AND DISCUSSION

In this paper we have reviewed statistical signal processing and data analysis
methods used in middle-atmosphere radar experiments. Steps in radar signal
processing use optimum receiver structures in several successive stages.
Coherent integrations is used primarily to reduce the data rates and the signal
bandwidth, by implementing a crude low-pass filter. Use of sophisticated
codes and fast pulse-by-pulse decoding circumvents some of the problems in
earlier high-resolution experiments. Effect of ground clutter in psd estimates
obtained with time-averaged periodogram can be reduced, especially at
UHF, with longer data blocks, zero-padding, and windowing. This step
should also simplify psd parameter estimation with adaptive least-square
error methods. The psd parameter estimates can also be improved with the
use of MEM and related spectral analysis methods.

These methods have evolved with rapid changes in computer technology.
Currently available desktop personal computers and workstations provide
ample memory (4-8 Mbyte), disc storage (-150-300 Mbyte), fast floating-
point coprocessors, and advanced graphics capabilities necessary for
analyzing large volumes of geophysical data. Particularly noteworthy is the
availability of several texts with well-documented software subprograms for
numerical and signal processing applications [Press et al., 1986; Marple,
1987; Steams and David, 1988]. Real-time signal processing applications also
benefit from these developments, and from the availability of faster digital-
signal processing chips. Some aspects of real-time radar signal processing
that need further efforts are (i) fast pulse-by-pulse decoders in high-
resolution experiments, (ii) multi-channel spectral analysis with ground
clutter suppression, (iii) spectrum analysis using MEM and AR methods,
and (iv) spectral-moment parameter estimation in real time.
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MONITORING VHF RADAR SYSTEM PERFORMANCE USING COSMIC NOISE

W. L. Clark, J. L. Green, and J. M. Warnock
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I. INTRODUCTION

Here we describe the use of cosmic noise at the Flatland radar (GREEN et

el., 1988) in preliminary calibration and the monitoring of system performance.

2. RADAR CALIBRATION

A typical Doppler spectrum is shown in Figure I. Riding below the echo is

a randomly fluctuating but uniform signal which, at VHF frequencies, is due

primarily to cosmic noise, which limits VHF radar receiver performance

(SKOLNIK, 1962). Over usual receiver bandwidths, the cosmic noise appears in

Doppler spectra as essentially white noise of power

i

PN - - -Br-k-T N [watts]
n

where n is the number of coherent integrations performed on the signal, B r is

the bandwidth of the receiver, k is Boltzman's constant, and T N is the nolse

temperature. If TN is known at the receiver input, the total system gain G
may be found using s

n'PNo n'P N

T N --- [ElTo k.B .G k,B
r s r

where T is the observed noise temperature which must be equal to the sourceo

noise temperature, and PNo is the observed noise power in digitizer units.
Thus,

PNo
G - -- [watts/(dlgltlzer power unit)].

S

PN

Using the current Flatland system, the receiver noise temperature T is about

600K and the antenna loss factor _ is approximately 0.5. ConsequenTly,

T N - T r + _.Tc_ 600 + 0.5.T c [K]

where T is the cosmic noise temperature.
c

3. CASE STUDY

The apparent cosmic, or sky temperature, Tc, in the VHF frequency range,

varies in a known way across the celestial sphere, being the strongest in the

direction of our galactic center, and the weakest in directions approximately

orthogonal to this. In Figure 2 we show the noise temperatures observed

directly overhead at the Flatland radar for a 24 hour period. The plotted

circles represent the noise temperatures extrapolated from sky survey maps for

200 MHz and a i0 ° beam-width (MENZEL, Harvard College Observatory Sky Survey).

The relation

T50 - T200 • (200/50) (2.7 ± 0.i) [K]
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Schematic of a typical Doppler spectrum taken from

BALSLEY (1978). Here, FNy represents the Nyquist frequency,

Af represents the frequency resolution, while ps(Bf) and pN(Af)
represent the echo power and noise power per spectral bin,

respectively. PN represents the mean of p. across the

spectrum, while _p. represents the mean fluctuation about p..

The total noise power in the spectra is then PN " 2"PN "F_Tv'
and is mostly due to cosmic noise in an optimized VHF'ra_Ar

system.

was used in the extrapolation, where TSO represents the noise temperature at

50 MHz and T200 the temperature at 200 MHz. The gain factor G was adjusted by

eye to make the data and the sky map values roughly agree. Th_s was suffi-

ciently accurate for our purposes here, though it could easily have been done

by least squares. More accurate results would require a more accurate deter-

mination of the power in the sky noise, a task _Ich includes consideration of

other sky surveys and the current effects of ionospheric absorption, which are

variable in time. Use of some other calibration source, such as a reference

noise diode, would be a better approach to such precision work (e.g., GREEN et

al., 1983).

4, MONITORING SYSTEM PERFORMANCE

It should be noted that the particular value of G found here is only

valid as long as no adjustments are made to the radar _ystem. For example, the

digitizing threshold at Flatland is resettable by turning a screw. Monitoring

the sky noise power observed is a useful way to detect such changes. It is

also a good way to detect and study changes in system performance, whether due

to intentional modification ( e.g., installation of new antenna feed lines), or

natural causes ( e.g., failure of a system component).

Examination of the noise power is also a good way to study the observing

limits of a specific radar system. For example, radars have a close in range

below which they will have difficulty observing echoes without distortion. Two

important reasons for this are ground clutter contamination and receiver

recovery problems. As an example, Figure 3 shows the apparent reduction of

noise power at ranges below about 5 kilometers observed with the current

Flatland system. For studies requiring interpretation of the echo power, such
information is invaluable to ensure that observed effects are not instrumental.
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5. SUMMARY

The cosmic noise signal, while limiting the performance of the VHF radar

receiver, has been used at Flatland as a system test signal. Rough calibration

of the system has been made using this signal_ and its use in monitoring system

performance is anticipated.
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ON THE OPTIMAL SPECTRAL SMOOTHING OF MST RADAR SIGNALS
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ABSTRACT

An estimate of the spectral smoothing on a Doppler spectrum may be obtained by
representing the signal (component) characteristics with a suitable statistical model.
Autocorrelation analysis of the MST signal data may be performed to estimate the characteristic
time (To) between "independent estimates" in the data. The characteristic time T O may be taken to
represent the correlation period of the scattering medium. Both the correlation period and the total
sample period (T) may be optimally determined by representing the autocorrelation function by a
statistical model. Then the optimal number of signal spectra, which may be incoherently averaged,
is given by I = (T/To)I/2. The effective spectral resolution bandwidth is Af = 1/T. Thus the
number of frequencies over which a measured Doppler spectrum may be optimally smoothed is
given by Is = I = (T/To)l/2. The effective spectral resolution bandwidth is Af = Is/T, T being the
observation period. The optimal value of the spectral smoothing parameter is shown to be 6. The
optimal value of the observation period is shown to be - 24 seconds, with the spectral resolution
bandwidth of ~ 0.25 Hz.

INTRODUCHON

The processing of the backscattered echoes with a receiver such as an MST radar is usually
carried out in different phases. First, coherent integration, through maximal matching of the
receiver filter with signal spectrum is done to retrieve weak signals in the form of a time series.
Next, an incoherent integration of this time series is performed to improve upon the detectability of
the weak signals. Incoherent integration is usually performed on the Doppler spectra by
cumulatively averaging a number (i) of Doppler spectra. Spectral smoothing over a (I s) number of
frequencies on a Doppler spectrum may also be done to further improve the detectability of the
weak signals (WOODMAN, 1985).

In the present study, some samples of Doppler spectra obtained with the Poker Flat radar
axe analyzed. It is shown that a Yule model may be used to represent the autocorrelation function
of the signal-plus-noise samples, with signal-to-noise (S/N) <- 6 dB. A Gaussian (or a
Markovian) model may be used to represent the autocorrelation function of the signal (alone)
samples, with S/N > - 6 dB. Some samples with larger S/N values, showing the presence of the
"oscillatory" nature of the signal component, may also be represented by a Yule model. The
Doppler spectra represented by a Yule model are termed as "weak Doppler", and those represented
by a Gaussian model as "strong Doppler" samples. For the strong Doppler samples the noise
spike (at zero lag) may be easily interpolated through and the autocorrelation functions
renormalized to the signal component alone. For the weak Doppler samples signal-plus-noise must
be treated, since it is a difficult task to separate out the signal and the noise components in an
autocorrelation analysis. T o, T and I = (T/'I'o),l/'2 are computed for the weak Doppler samples. A
statisfftcal test on the detection of "real" signals is made.

THEORY

(A) An expression for the signal detectability

A statistical test on the detection of real signals may be made by examining the mean (input)
signal level (I.t) with respect to the rms noise figure (t_, both receiver and cosmic). The input
signals (at an interval of Ax, interpulse period) may be coherently integrated to obtain a (time)
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series, ¢_x), of single sample energies (with mean _t). This a predetection detectability factor, apart
from common radar parameters, may be given as (BALSLEY, 1978)

_2
D = -- (1)

a2

The variance of the time averaged sequence _x), (incoherently averaged over a period T) is given

where a 2 is the noise variance of the original random sequence, and To and T are the correlation
• " - ,"_,_ _I/2 of Sl al ctra mand the total sample periods, respectively. A number I = it/to, "gn spe ay be

incoherently averaged over a sample period T. Equivalently, a measured Doppler specmim may be
smoothed over a number ofI s = I = (T/To)I/2 of frequencies; T is the observation period.

The mean input level II may be obscured within 4"lo T (half power points),,erro, r bars,
associated with finite time average estimates of the mean_. For the detection of real input
signals; _I_O T _ I (LEITH, 1973). Accordingly, the post detection expression of the S/N ratio may
bc modified (from expression I) as

D=_-- _-_.= _t__2 _o ) B2o _ 0 2 ( l_=_._I (3)

(B) Estimationofthecorrelationandthetotalsampleperiodsthroughvariousstatisticalprocesses

The autocorrclationfunctionofanunaveragcdtimeseriesforaMarkov n-wxlclisgivenby

k
Pk = P I (4)

or,equivalently,P('0= exp (-vx) (5)

where k isan integer,pI thelag -I autocorrclationvalueand v a measure of the equivalent
dccorrclationwidthoftheautocorrclationfunction.The correlationperiodTo foraMarkov model,
usedby meteorologists,isgivenas

.2. T-_T o=I+2(I- )pl +2(I-2) p2I+ .... +tT)pt (6)

If T is the averaging time in seconds then Pl is the lag -l (seconds) autocon_lation value. A set of
plots of T Ovs T for different values of pl (after MADDEN, 1979) are given in Figure la. Here T o
is defined for a very large value of T. The autocorrclation function for a Yule model is given as
(KRANDALL and STUART, 1966)

Pk = pk sin(k0 + _)/sin_ (7)

where
0q = - Pl (1- P2)/ (I- 02)

tan_ = (1 + p2) / (1 _p2), tan0

The correlation period T o for the Yule model is a generalized form of expression (6) (JONES,
1975)

To=l+ 2(1-_) Pl + 2(1-_) P2 +... + (_) PT-I (8)
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A set of curves of To vs T for different combinations of the values of Pl and P2 are given in Figure
lb. The value of To again corresponds to a sufficiently large value of T. Expression (8) is used to
estimate the correlation period and the incoherent averaging parameter for the weakly Doppler
shifted MST echoes. The criterion for the detectability of "real" input signals (expression 3) is
tested for the weak Doppler samples.

DATA ANALYSIS

A limited amount of data on Doppler spectra (obtained at Alaska) with the Poker Flat MST
radar operating at 50 MHz have been used in the present analysis. Estimates of Doppler shift (f_)
and signal spectral width (W), from moment analysis of "raw" data, were also made available.
Spectral estimates were obtained by averaging four contiguous spectra. Smoothed Doppler
spectra, at 32 frequency points, and at 44 levels in the atmosphere, were provided (with a spectral
resolution bandwidth of Af = 0.2382 Hz). The observation period was = 16 seconds. 'Real"
autocorrelation functions were computed through an inverse FFT algorithm. Finally, ten seconds
of autocorrelation functions were selected at various S/N nitios for the analysis of weak Doppler
samples (corresponding to Yule type autocorrelation functions). Representative autocorrelation
functions for the strongly (S/N > - 6 dB) and weakly (S/N ._ - 6 dB) Doppler shifted samples are
presented in Figure 2.

RESULTS

For the weak Doppler samples, the correlation periods lie in the range of 0.01 to 0.1
second (Figure 3). The total sample period (T) is - 4 seconds. A plot of the incoherent averaging
parameter I vs S/N, for the weak Doppler samples, is given in Figure 4. It is evident that to detect
weakly Doppler shifted signals, I be ~ 6. Thus a six-point frequency smoothing (Is = I = 6) of a
measured Doppler spectrum may be affected for optimum processing of the MST radar signals.
The observation period in the data analyzed is ,- 16 seconds and the spectral smoothing used in the
data is over Is = 4 number of frequencies. A six-point spectral smoothing would require that the
observation period be about 24 seconds. The effective specual resolution bandwidth is = 0.25 Hz.

CONCLUSIONS

The detectability of weak signals with an MST radar technique requires that an appropriate
spectral smoothing of the received backscattered echoes be performed. An estimate of the
magnitude of the spectral smoothing may be obtained by representing the signal characteristics with
a suitable statistical model. Then the correlation period (To), the total sample period T, and the

1/2 ......
incoherent averagmg" parameter I = lrz'ff-/T°)m.are optimally det .enmned.nI The signal detectabihty isimproved by a factor of I = (T/T o) the incoherent averagt g of number of signal spectra.
Equivalently, a spectral smoothing over Is (=I) number of frequencies in a measured Doppler
spectrum may be performed. Then T is the observation period. In the case of weakly Doppler
shifted MST echoes, the autocorrelafion of signal-plus-noise may be represented by a Yule auto-
regressive model; TO is in the range of 0.01 to 0.1 second. The optimal value of the incoherent
averaging parameter is I = 6. The total sample period is ,- 4 seconds, with the spectral resolution
bandwidth Af = 0.25 Hz. Thus the optimum spectral smoothing parameter Iswould be I_ = I = 6.
The optimum observation period would be = 24 seconds, Af ,_ 0.25 Hz. A reduction m Af, to
say, 0.06 Hz, would require that unaveraged Doppler spectrum of about 16 seconds of duration
may be processed.
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SPECTKAL ANALYSIS OF ATMOSPHERIC SIGNALS WITH A
POWER-LAW SPECTRUM

Prabhat K. Rastogi
Electrical Engineering and Applied Physics Department

Case Western Reserve University, Cleveland, Ohio 44106

Abstract

The assumption of wide-sense stationarity in the classical framework of
spectral analysis is readily violated by atmospheric radar signals with a
fading ground clutter component, and by velocity data with a power-law

power spectrum density (PSD). Consequences of nonstationarity or trends on
time-averaged periodograms using the discrete Fourier transform (DFT)
methods are examined. Non-stationary trends have a very low frequency, but
manifest as leakage at all DFT frequencies. The autocorrelation function
(ACF) has a non-decaying component due to trends, which is aliased due to
the periodicity imposed by the DFT. Hence, ACF cannot simply be recovered
as the inverse DFT of the time-averaged periodogram. These artifacts of
nonstationarity can be minimized by removing trends from the data.
Alternatively, a window with 'good' frequency sidelobes should be applied
to the data or to its ACF estimated through time-averaged lagged products.
Several useful windows with low sidelobe levels are reviewed. A family of
windows with frequency side-lobes decaying as an odd power of frequency
is obtained by a modification of the approximate Blackman window. Trade-
offs between the required duration of a data segment, frequency resolution,
and statistical uncertainty of PSD estimates are briefly examined.
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FLATLAND RADAR ONLINE SIGNAL PROCESSING AND RADAR CONTROL SYSTEM

J. L. Green and W. L. Clark
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325 Broadway, Boulder CO 80303, USA

1.0 INTRODUCTION

The new Flatland radar controller and signal processor will have a

number of novel features. It is based on an in-house developed control

interface with a special purpose, addressed data bus, a readily available

personal computer system, an inexpensive signal processing interface card,

and data archivlng to optical disk. The controller has several innovative

features, including a standard IEEE°488 General Purpose Interface Bus

(GPIB) interface to the computer (thus eliminating dependence on any

particular type of computer), a special purpose addressed data control bus

which allows modularization of the control functions (e.g., each range gate

is an addressed device), individual analog anti-aliasing filters for each

range gate, and special modules to phase steer the antennas. As a

consequence of these special features, the controller can handle more than

one radar system at once, as well as simultaneously monitor the output of

some other types of instruments as well (e.g., data from an associated

boundary layer radar, or perhaps surface pressure, temperature, humidity,

etc. ).

2.0 THE RADAR CONTROLLER

The radar controller has a number of separate functfons. For

example, it

coordinates the actions of the transmitter and receiver;

controls the transmitted pulse length;

selects range gate filters;

enables each range gate at the appropriate time;

performs anti-aliasing filtering on each received signal;

digitizes the anti-aliased output of each range gate;

sends the digitized received data to the signal processor

(i.e., system computer).

Physically, the controller consists of a chassis with a custom

backplane accepting control modules. Each module is an interface card,

which may perform one or more of the above functfons or even more general

functions, such as monitoring the transmitter power or atmospheric surface

pressure. Electronically, the controller is composed of a parallel

address/data bus driven by a i0 MHz clock pulse. Each device module is

individually addressable via the address lines on the bus. Thus, some

addresses may be thought of as commands to start a process (such as
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starting the transmitter), othersas commandsto set registers controlling
a process(suchasinitializing a countdownregister with the numberof
clockcycles to countdownbeforeturning on a range gate), while others

interrogate registers holding data (such as the anti-aliased output

available from a range-gate module).

2.1 Device Modules

The functions necessary to run the radar are implemented as modules,

each having its own independent interface card and address on the bus.

This greatly increases the flexibility of the system and eases the burdens

of both software and hardware development, since each function is

addressable and controllable through a standard interface. Furthermore, it

is easy to introduce devices unrelated to the ST radar into the data

stream. For example, some modules could represent output from a co-located

boundary layer radar, or perhaps surface meteorological measurements. The

computer software would be able to input and control information from this

variety of sources through a uniform interface.

2.1.0 Rad_-Pu_se Module

This specific module, designed for the Flatland radar, is an

interface card whlch can simultaneously control two partially independent

radar systems, which we denote NS and EW, representing the vertical planes

in which their associated antennas are able to steer. This capability

allows atmospheric profiling in two cardinal compass directions at once.

Currently, to simplify the data-throughput, the two radars have

synchronized TX and TR pulses. Other parameter settings are independent.

The TX pulse is an integral number of i0 MHz clock pulses in duration.

Thus, digitally speaking, transmitter pulses as short as 15m could be used,

which is shorter than any pulse-length likely to be practical utilizing a

50MHz radar. The TR and TX pulse are, of course, gated to ensure that the

receiver is off during transmissions.

2.1.1 Range-Ga_ Modules

The range gates in this system are addressed and controlled as any

other device on the controller bus. Consequently, the range gates for the

radars NS and EW are differentiated only by their bus addresses. The range

gates are implemented in 4-gate modules, each module consisting of a

standard interface card with all the logic to handle the gating,

antl-aliasing, and sampling for eight (i.e., 4 real and 4 quadrature)

signals from the coherent detector. Each range gate is individually

addressable on the bus, and range settings, which are independent of each

other, are adjustable to within the 15m increment based on the i0 MHz bus

clock. Each signal is detected through an analog anti-aliasing filter,

which has selectable bandwidths corresponding to a selected number of

desired radlal-velocity spectral widths. At pre-set intervals, this

filtered signal is digitized using a 12-bit ADC, and read by the system

computer.

The use of anti-aliasing filters for each channel is different from

the coherent integration used in many other radars, though it is similar to

the method used with the Sunset radar (GREEN et al., 1979). This method

sacrifices the automatic adaptation of the filter function inherent in the

coherent integration antl-aliasing but obtains improved signal-to-nolse
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ratios for radial velocities observed near the spectral velocity limits,

and greatly reduces the amount of data that the signal processing computer

must handle. This reduction of data facilitates the ability of the signal

processor to handle more than one radar system.

2.1.2 Antenna Steering Modules

The current Flatland antenna has 32 separately fed elements, with 16

assigned to the north-south steering directions and 16 to the east-west.

Steering is accomplished in a similar fashion to that used at the Sunset

radar (GREEN et al., 1980), wherein a phase shift box is assigned to each

transmission line. The phase steering interface cards each handle 8 phase

shift boxes. The computer control program is thus able to steer the radar

through setting the phase-delay in each of the 32 phase-shlft boxes.

2.2 Controller I/O Bus

The radar controller is itself controlled by a system computer over a

separate I/O bus. On the controller side, the address/data bus described

above is used. On the computer side, the standard computer bus is used.

The link between the two is accomplished through conversion of the

controller bus to IEEE-488 with a commercial parallel to 488 bus converter

box. A readily available IEEE-488 computer interface card is used to

accomplish the same task in the computer. This arrangement conveniently

ensures complete independence of the interface from any specific type of

system computer. This versatility is made possible because of the low

data-throughput provided by sending only anti-allased data to the system

computer for signal processing.

3.0 THE SYSTEM COMPUTER

Primary control of the radar operation is implemented using the C

programming language on a COMPAQ Deskpro 386 Model 40 personal computer.

This computer is IBM-PC AT compatible, though having extended capabilities

based on its 32-bit data paths and use of the Intel 80386 cpu and 80587

numerical coprocessor IC's. The computer keyboard is used for operator

input, and a color EGA interface and monitor provide on-line graphics and

control menus. The software consists of an integrated mix of in house

programming in Microsoft C 5.1 and commercial peripheral drivers.

communication with the radar controller and the peripherals is through

interface cards using the standard PC-bus.

4.0 THE SIGNAL PROCESSOR

The Doppler power-spectra are calculated using the DSP32-PC signal

processing board supplied by Communications Automation & Control. This

board is based on the AT&T WE-DSP32 Digital Signal Processor chip. Its

1024 point complex floatlng-point FFT benchmark time is 14 msec, so that we

perform all calculations in floating point. This chip is also capable of

performing logic at high speed, allowing its use to find the Doppler

spectrum moments as well as the Doppler spectrum itself. It is described

in more detail in another paper in this volume (CARTER et al., 1989).
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5.0 DATA ARCHIVING

The Doppler spectra and online moment calculations will be saved to 5

1/4" optical disks, utilizing a Storage Dimensions LS-800 Optical Subsystem

with thelr.proprietary software. This software is installed on the PC as a

DOS driver, so that the optical disk might be thought of and is used in the

same manner as a 400MByte floppy disk, with the exception that data once

written may not be erased. The use of optical disks for this purpose has

two great advantages:

The capacity is larger than for the more traditional 9-track magnetic

tape systems;

The random access nature of the optical disk technology is allows

much more efficient access to data embedded in such large data sets.

On the minus side, however, we note that this technology is rapidly

evolving, and their is no common disk format. Thus, brand is important for

compatibility, so that there is no second source. Furthermore, there are

no guarantees that a manufacturer will not drop a particular format when

such standards become available. Nonetheless, the advantages cited allow

modes of operation at the radar that otherwise would not be obtainable.

6.0 SUMMARY

The Flatland radar control and signal processing system incorporates

a mix of inexpensive, off-the shelf computer and signal processing

equipment where possible and custom devices where necessary. It is

designed in such a way that any part, including the computer, can be

changed without impacting the rest of the system. The system is very

flexible, and incorporates some novel abilities. Perhaps the most

important is its ability to handle more than one radar simultaneously.

This will immediately allow a doubling of the data rate and opens the door

to easy incorporation of boundary layer radar data into the data set should

such a radar be installed. Along these same lines, it can incorporate

complementary observations , such as surface meteorological observations,

into its data flow easily. Furthermore, implementation of phase steering

is easily handled by assigning each phase box an address on the bus.

The availability of the new signal processing integrated circuits has

greatly facilitated the processing of this type of data. Indeed, since

these new chips include logic for flow control, even such tasks as reducing

the Doppler spectra to edited moments can be handled in floating point at

online speeds.
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A PC-BASED RADAR CONTROLLER/SIGNAL PROCESSOR

D. A. Carter, P. E. Currier, and W. L. Ecklund

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, Colorado 80303

A new 915 MHz boundary layer radar has been developed at NOAA's Aeronomy

Laboratory. For optimum performance this radar requires a faster, more power-

ful controller/processor than is used with our existing 50 MHz radars. To meet

this need we have developed a personal-computer-based system that performs all

the functions necessary for controlling the radar, acquiring the data samples,

and carrying out the spectral analysis. This PC system not only outperforms

our previous mini-computer-based system but is also considerably less expen-

sive.

The radar controller/processor system consists of a PC-AT compatible

computer with internal pulse generator, coherent integrator, and signal

processing cards plus an external ADC module. The computer uses EGA graphics

for display and a dot-matrix printer for hardcopy output. Mass storage of

Doppler spectra is currently on 9-track tape, although higher density optical

disks or helical-scan digital tapes may be used in the future.

The pulse generator card, built in-house, is a flexible programmable

device that can generate transmitter/receiver pulses and range gates as short

as 150 nsec. The coherent integrator card adds the 8-bit data samples (sent

from the flash converters in the external ADC module) into 16-bit sums and can

handle up to 512 range gates.

The coherently integrated data is sent via a 1 Mbyte/sec serial port to

the signal processor card, which is a commercial board that uses the

AT&T DSP-32 floating point processor. This board is low-cost (about $800 US)

and relatively easy to program (a C compiler is available). All instructions

execute in 250 nsec including a floating point multiply, accumulate, and store

instruction. A complex 128-point FFT can be done in 2 msec. The operations

performed by the DSP card in our system include pulse decoding (if required),

dc filtering, windowing, and calculating the FFT's, power spectra, and spectral

moments, all in essentially real-time.

The program running on the PC-AT is written in Microsoft C. An easy-to-

use interface allows the user to set up the radar parameters and pulse

sequences. Once the radar is started, the PC does little but handle some

communication between the cards, which do the bulk of the processing, and then

plot and store the resulting spectra.

There are several areas where the system performance can be improved in

the future. With small changes in the timing circuitry in the external ADC

module, the system should be capable of sampling and processing range gates

only I00 nsec apart. The coherent integrator can be expanded from 16-bit sums

to up to 27-bit sums by plugging additional FIFO's into sockets on the card and

writing a DSP program to convert the long integers to floating point. The

current amount of memory on the DSP card limits the system to 50 range gates

with 128-point spectra. A new version of the DSP chip is now available which

can access more external memory (16 Mbytes vs. 56 kbytes) and which is also

much faster (100 nsec vs. 250 nsec instruction time).
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ThePC-based radar controller/processor described here is a significant

improvement over the mlnl-computer-based system that we have used for many

years. The PC with disk drive, display, printer, and DSP card costs about one-

third as much as the previous system. The DSP card can perform floating point

FFT's about 20 times faster than the mini-computer can calculate integer FFT's.

The PC program is much easier to develop and modify compared to the previous

assembly-language program. Because of the large selection of PC compatible

computers, peripherals, and accessories available on the market, the radar

controller/processor system should be easy and relatively inexpensive to main-

tain and upgrade in the future.
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PERFORMANCEOFTHES-BANDSTRATOSPHERICDECODING SYSTEM

AT THE ARECIBO OBSERVATORY

H.M. Ierklc V. (I) and R.F. Woodman (2)

(i) Arecfbo Observatory, P.O. Box 995, Arecfbo F.R. 00613.

(2) Instltuto Geofisico del Peru, Apartado 3747, Lima i00, Peru.

I. Abstract

The objective of our work is to propose and analyze a decoding

procedure useful to achieve unprecedented spatial and temporal resolution in CW

S-band radar measurements at the AO. We find that using hard limiting

transformations of the detected echoes (to achieve computational speed) does

not distort significantly the process of spectral estimation. Moreover our

procedure is efficient in the sense that statistical accuracy of individual

estimates is kept with small increase in (coherent) integration time specially

if the time series is oversampled. These characteristics make our. estimation

method very convenient.

II. Introduction

There is a real need for a detailed spatial and temporal description of

the atmosphere. This need has been defended by several workers of the different

regions of the atmosphere but in particular, for the stratosphere, by WOODMAN

R.F. (1980). A problem that we are interested is the description of the

morphology of turbulence in the lower stratosphere and its contribution to the

diffusion characteristics in the region. To accomplish our goals we require

continuous observations of the medium using tools that are capable of achieving

spatial and temporal resolutions of,say 15 meters and i0 seconds respectively.

At the Areclbo observatory the S-band radar system (2380 Mhz), used in a

blstatic fashion (because it lacks a T/R switch), has the potential to be used

for our scientific goals.

In this paper we propose and evaluate a procedure that is being success-

fully used in the lower atmosphere . Some preliminary results have already been

presented by IERKIC H.M. (1987),and more will be shown, in another work, at

this workshop. The next section is dedicated to the presentation of the theory

and later we close pointing the important results of our study as well as the

orientation that our effort is taking. We want to state here that the linear

characteristic of the calculated transfer function has been verified under

laboratory conditions.

III. Theory and d_cuss%oD

Consider, for the purposes of this work that a CW coded signal is being

scattered in the stratosphere and that it is being received and demodulated to

base band. Furthermore, assume that the specific code used is a pseudo-nolse

one (MacWILLIAMS and SLOANE, 1976) and that the scattering medium has large

correlation times relative to the duration of the code. The detected signal

contaminated by diverse sources of noise is first digitized and then decoded

using a correlator, We will present results for the cases when the echoes are
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digitized using i bit, 1.6 bits (3 levels) andmanybits; the discussionwill
concentratein the 3 levels casefor the algebraic development that follows.

Assuming that there is only a single scattering target, the action of the

decoder is described by the following formula,

e(k)-Z{g(Vs*c(i)+Vn(i))*c(i+k-l)}, i-i,2 ..... q*N. (I)
i

Here, N is the number of bauds of the code, q the number of times the code is

recycled before the coherent integration time is reached, V s represents the

intensity of the echo, Vn(i ) is the i-th noise sample, c(i) is the i-th value

of the code (either -i or +I), g describes the transfer function characteristic

of the digitizer and e(k) is the decoded signal corresponding to lag k with the

idealized scatterer located at k-l. The noise samples have an underlying

Gaussian distribution with probability density function f and distribution

function P. The expected value of the output given by the correlator is,

_(k)-E[e(k)] (2)

Equation (2) can be readily evaluated to give,

#(1)-p0+2*pl-I (3a)

.(k)--_(1)/N (3b)

where,

pO-P(Vc-Vs/Vn)+P(Vc+Vs/Vn)-I (4a)

pl-l.-P(Vc-Vs/Vn) (4b)

with V n denoting the standard deviation of the noise and V c the threshold level

of the digitizer. Equation (3) shows that in order to keep range contamination

low the length of the pseudo noise (PN) sequence should be as long as possible.

Figure i illustrates the behavior of _(i) versus V s keeping V c as a

parameter and the several curves can be understood intuitively. In order to

evaluate the performance of the proposed decoding procedure we find convenient

to calculate the variance of the statistical estimator e(k) in the usual way,

Var(k)-E[e(k)**2]-_(k)**2 (5)

To actually compute the variance we assume that the noise samples are

uncorrelated and use the property of the PN sequences that out of the N bauds

of the code, (N+I)/2 are minus one and the rest plus one. Explicit computation

reduces (5) to

Var(k)-(l-pO -(l-pO-2*pl)**2)/(q*N) (6)

The measure of performance that we use can now be formulated by

requiring to find for each Vs/V n the value of Vc/V n that minimizes the modified

variance defined as MVar(k) below,
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MVar(k)-(Var(k)/#(k)**2)*(Vs/Vn)**2 (7)

the result of the optimization procedure is presented in figure 2 and can be

summarized by saying that for small values of Vs/V n (the actual situation in

our experiments) the optimum value of Vc/V n is about 0.60. Moreover by compar-

ing the performance of the three level scheme with the multiblt case (when,

p(1)-V s, _(k)--_(1)/N and Var(k)-_(k)**2/q*N) we can see from figure 2 that the

relative efficiency turns out to be about 0.81.. This last result implies that

with about 25% longer coherent integration time we achieve the same accuracy as

in the many bit case.

Another very encouraging property of the scheme we are considering is

that the decoded signal does not show appreciable distortion over a wide range

of values of Vs/Vn, including those found under practical circumstances. To see

this linearity property we use a Taylor expansion of _(I) to get,

#(i)- 2.*f(Vc/Vn)*(Vs/Vn)*{l+O.167*((Vc*Vs)/(Vn**2))**2) (8)

with Vs/V n small and the quadratic term contribution minor. The similar

expansion for the variance is,

Var(k)-

(2.*(l.-P(Vc/Vn))+f(Vc/Vn)*(Vs/Vn)**2*(Vc/Vn-4.*f(Vc/Vn))}/q*N (9)

The description of the i bit case (2 level digitizer) can be obtained by simply

setting Vc-O in the equations above, so that in particular we are ready to get

the result that this decoding scheme has a performance such that it requires

about 1.6 times longer to get the same accuracy as in the multlblt case.

Another interesting property to be evaluated is the improvement that oversam-

pllng (i.e. the noise samples become correlated) will bring about. The analysis

now is again simple but cumbersome and we will Just state some results; before,

we assume that the noise has flat spectral characteristics a fact that can be

altered with no major consequences. It can the be shown that for the multiblt

case the variance is given by

Var(k)-

2.*Vn**2/(M**2*q*N)*{M/2.*r(O)+(M-I)*r(1)+ ... +r(M-l)) (i0)

with M representing the degree of oversampllng (e.g. M-2 is twice the Nyquist

rate) and r(k)-E[Vn(i)*Vn(i+k) ] . Evaluating (I0) for M-2 and M-I we find that

there is an improvement in the variance of about 0.82. For M large this

improvement asimptotlcally reaches a value of about 0.77 which normally does

not Justify going beyond M-2. The variance for the 1.6 bit case with oversam-

piing can be shown to be,

Var(1)-

I/(M*q*N)**2*[2*q*N*{M/2*Re(O)+(M-I)*Re(1)+ ... +Re(M-l)}+

(q*(N-I)/2}*((M-I)*Re(M-I)+ ... +Re(1)}+(q*(N+I)/2-1}*((M-I)*

Ru(H-l)+ ... +Ru(1)}-(q*N*M**2+(q*N-I)*M*(M-I))*_(1)**2] (II)

where,

Re(k)-E[g(Vs+Vn(1))*g(Vs+Vn(l+k)) ] (12a)

Ru(k)-E[g(Vs+vn(i))*g(Vs-Vn(i+k)) ] (12b)
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and specific properties of the PN codes were used to get (ii). Equation (Ii)

is cumbersome to work with analitlcally, however if we consider Vs-O , then we

can use the results obtained by HAGEN and FARLEY (1973). In particular, using

their figure 7 (curve ii) to find Re(k) (note Ru(k)--Re(k) when Vs-0), we can

readily conclude that with oversampling the performance of the three level

scheme is at least as good as the many bit case with no oversampling. A final

point is that the correlator at the AO is peculiar in that, first it does not

reset the 6 least significant bits of its accumulators and second it drops

those bits at the end of the operation. We have verified that this fact will

cause an error of plus or minus one in the final count and turns out to be

unimportant within the range of values used in the experiments.

IV. Cgnclusions

We have shown that within a wide margin of values of V s the estimator (I)

is linear, consequently we can say that our statistical procedure introduces no

distortion in the measurements. We have also shown that the method in

consideration (I bit, 1.6 bits) is fairly efficient when compared with the

multibit case specially if the random series is oversampled (in the sense that

the points are correlated). It is also worth mentioning that crude sampling

makes it possible to achieve fast computational speeds which in turn imply that

we can do our atmospheric studies with unprecedented height resolution. A

simple extension of the theory presented shows that in the presence of a

continuual of scattering (a scenario closer to the actual physical situation)

the measured quantity will be,

_(k)- 2.*f(Vc/Vn)*(Vs(k)/Vn)-2.*f(Vc/Vn)*{Z(Vs(j)/Vn)}/N

J
(13)

for the three level case, with the index j s.t. q-< j -< N and j different than

k. In the multibit case the expression reads,

_(k)-Vs(k)-Z(Vs(j)/Vn)/N (14a)

J

Var(k)-Vc**2/q*N (14b)

We are proceeding forward with the analysis to consider more realistic

conditions (instrumental and scattering models). We also want to carry on, the

analysis considering the codes as random variables (here we regarded them in a

strictly deterministic way) and would like to find further common grounds with

the work of HAGEN J.B. and D.T. FARLEY (1973). Finally, we are exploring the

application of the technique to measurements in the presence of strong reflec-

tions or clutter.

V. Acknowledgements

We thank P. Perillat for the implementation of the proposed procedure,

J.B. Hagen for useful discussions and C.O. Hines for his support. We are very

happy to thank T. Hagfors for his continuous encouragement.



617

VI. Be[erences

Hagen, J.B. and D.T. Farley, Digltal-correlation techniques in radio science,

Radio Sci., 8(8,9), 775-784, (1973).

lerkic, H.M., R.F. Woodman and P. Perillat, Spectral measurements of

stratospheric echoes with the Arecibo 2380 Mhz radar, Eos, 68(44),1223, (1987),

Abstract.

MacWilliams, F.J. and N.J.A, Sloane, Pseudo-random sequences and arrays, Proc.

IEEE, vol. 64(12), 1715-1730, (1976).

Woodman, R.F., High-altitude-resolutlon stratospheric measurements with the

Arecibo 2380-Mhz radar, Radio Sci., 15(2),423-4300 (1980).



618

SIGNAL PROCESSING SYSTEM FOR THE INDIAN MST RADAR

Y. G. K. Patro, Anjali Bhatia, N. N. S. S. R. K. Prasad, P. Balamuralidhar,
A.Kulkami, and V. K. Jain

SAMEER, I.I.T. Campus
Powai, Bombay 400 076, India

INTRODUCTION

The signal processing system of the Indian MST radar is designed to have on-line spectral

processing capability in 256 range bins with provision to easily upgrade to 512 range bins. The
range bins may be selected to be in two windows, each with selectable start point and width. This

scheme has the advantage that the user has an option to position the range windows to cover the
altitudes of interest in the stratosphere, troposphere, or in the mesosphere. The design also caters
to on-line decoding of the received signal with a biphase-shift keyed coded pulse transmission

where the code is up to 32 bits long and is changeable from pulse to pulse. Sixteen or 32-bit

complementary code pairs are selectable as standard. Coherent integration prior to spectral
processing is done to achieve data reduction to the extent possible such that the maximum expected
radial velocity of the atmospheric turbulence can be estimated ambiguously. The received signal in

each range bin can be processed to 512 point spectral resolution in order to yield a velocity
resolution in the range 0.09 to 2.8 rn/s. In order to have a processing dynamic range of 70 dB, the

video signals in the I and Q channels of the receiver are digitized to 12-bit resolution. The A to D
converter in each channel has 1 MHz word rate. Uncoded pulse transmission is treated as a code
of a series of 1 s and thereby the decoder is used as a digital matched filter. In order to correct for

instrumental bias error, the phase of transmission is reversed for every alternative pair of

transmitted pulses.

The signal and data processing system, shown in Figure 1, mainly consists of a
preprocessor, a timing signal generator, a radar controller and a data processing system. The
preprocessor and timing signal generator are designed inhouse to meet the special requirements of

the radar. The radar controller is an IBM PC-AT compatible in the role of an instrumentation
controller. The data processing system is based on a 32-bit super minicomputer MC 5600 system

from M/s. Masscomp. USA.

TIMING SIGNAL GENERATOR (TSG):

The timing signal generator is a programmable multichannel pulse generator and supplies
the pulse signals required by various subsystems of the radar, including the preprocessor. It
supplies the sampling pulses to the A to D converter of the preprocessor from the start of the first

range window to the end of the second range window. In case of coded transmission, the sample
window is extended by one transmit pulse period. The TSG is designed around the

microprocessor 8085A and a programmable interval timer 8254 (INTEL). It gets its control inputs
from the radar controller through IEEE 488 interface. Details of the subsystem can be found
elsewhere (PATRO and PRASAD, 1988). This design differs from other designs like TSG of the

SOUSY radar, where two memories are involved. The program memory contains the various
commands and rate memory has respective time intervals for which the commands have to be
carried out.

PREPROCESSOR

The bipolar video signals in the in-phase (I) and quadrature phase (Q) channels of the radar
receiver are sampled, digitized, decoded and integrated as shown in Figure 2. The interface circuit

multiplexes the I and Q channel integrated outputs and feeds to the computer through a parallel

interface a complex integer formatted data corresponding to the range bins of the user-selected
range windows. The Control Communication and Test (CCT) subsystem of the preprocessor
communicates with the radar controller through IEEE 488 interface for passing parameters such as
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code, number of range bins, their locations, etc. It is also designed to perform diagnostic self-test
procedures for testing the decoder and integrator. The decoding operation essentially involves
correlating the incoming data stream from the ADC with the transmit code (FUAKO et al., 1985).
As the maximum code length is 32 and maximum data rate 1 MHz, the decoder needs to be able to
perform 32 additions and 32 multiplications within 1 microsecond if it is to decode the received
signal in real-time. The implementation of the decoder was highly simplified by the availability of
a 16-bit 32-tap correlator/transversal filter IMS A100 chip from INMOS Inc. ('USA). The INTEL
8086 microprocessor is used to configure the A100 mode of operation, and to load the current and
update coefficient register banks of the A100. At the end of each interpulse period, the 32-bit code
of the next transmit pulse is swapped into the active coefficient register bank. The 12-bit data from
the ADC are clocked into the 16-bit wide data-in port of the correlator and the output is clocked out
through the 24-bit wide data-out port into the integrator. The use of the A100 reduces the amount
of hardware required to implement the decoder by a very large factor, when compared to other
approaches such as the shift-registers-serial addition implementation of the MU radar, or one
involving the use of one-bit correlators (TDC 1023) in parallel.

Integration is done in a double buffer mode for a user-specified number of interpulse
periods. Two RAM memory banks, each 2 K long and 32-bit wide are used for the buffers. At
any given time one memory bank acts as the storage buffer for the data of the range bins under
observation, while the returns of the successive transmit pulses are integrated on to them in real-
time in a read-add-write cycle. The other memory bank, containing the integrated data from the
previous integration time period is accessible by the interface circuit to be put on the data bus of the
10-bit parallel interface.

ADC, decoder and integrator blocks have been implemented and tested in real-time with
simulated data and their performance was found to be satisfactory. The design and implementation
details of the preprocessor may be found elsewhere (PATRO et al., 1988).

DATA PROCESSING SYSTEM

The data processing system is responsible for high speed data acquisition from the
preprocessor at a maximum rate of 0.5 Mb/s for 256 range bins), high speed processing at a
maximum estimated speed of 5 MFLOPS and data storage on to tape or disk media. The
MASSCOMP MC5600 computer system configuration includes a data acquisition control
processor (DACP), a tightly coupled vector accelerator and an independent graphics processor. It
operates in a Real Time Unix Operation System environment. This is different from the earlier data
processing systems in which a loosely coupled vector accelerator is used.

The DACP acquires data from the preprocessor and transfers to the host memory using
DMA in a double buffer mode. When data in one FFT frame is acquired the full buffer is released
for FFT processing with acquisition still continuing in the second buffer. At the end of FFT
processing of the first buffer it is released for further data acquisition. The processed data are
transferred to the shared memory buffer where a specified number of incoherent spectral
integrations are carried out. At the end of the last averaging, the data are formatted and stored in
magnetic tape media. This process repeats until the specified number of observations are
completed or until a 'stop' command is received from the radar controller. On user request, the
processed data may be displayed on the graphic console of the host computer.

RADAR CONTROLLER

The radar controller is responsible for the proper coordination, control and monitoring of
the various subsystems of the radar including the data processor. The communication with
inhouse equipment such as TSG, preprocessor, radar receiver, and modulator is through IEEE 488
interface. Communication with four satellite processors which are in four remote transmitter
buildings, each monitoring and controlling eight transmitters is through a serial RS422 interface.
Communication with the host processor is through RS232 interface.
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SOFTWARE STRUCTURE

The software is divided into the following subproccsses on a functional basis. (1) The
first level contrgl process (P1) establishes communication with the radar controller and controls the

system operation by communicating with other subprocesses. (2) The data acquisition and
processing (P2) in the double buffer mode of operation is a child process of P 1. (3) Another child

process of P1 is data formatting and storage process P3. (4) The data presentation process (P4)
which can be invoked independently by a user on the graphics console provides graphical
presentation of the processed data either in on-line or off-line modes, For the synchronization of
each process with the totalsystem operation,interprocesscommunication mechanisms likeshared
memory, Asynchronous System Traps and Signalsare used. The software isin an advanced state
of development. The detaileddesign of the data processing software may be found elsewhere
(PATRO et al.,1988).
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ABSTRACT

Empirical investigations show that at low and moderate signal-to-noise ratios, maxi-

mum entropy (ME) Doppler shift and spectral width estimates of VHF radar signals

have significantly higher accuracies than conventional periodogram estimates with

noise thresholding. The variances of the ME estimates decrease with decreasing

spectral width and clearly indicate a limiting signM-to-noise ratio below which the

Doppler shift estimates are dominated by cosmic and instrumental noise rather than

fluctuating radar signals. Two criteria are derived empirically that yield estimates of

the optimum ME prediction-error filter lengths for computing the Doppler shift and

spectral width of individual radar signals. At small signal-to-noise ratios, the Doppler

shift criterion produces variances that are close to the minimum variance bounds of

spectral methods. Fast ME algorithms for computing signal power, Doppler shift

and spectral width are described. At large signal-to-noise ratios, the ME Doppler

shift, estimator is faster than the corresponding periodogram estimator based on a

fast Fourier transform whereas at low signal-to-noise ratios, it is slower. For comput-

ing a typical height profile of the mean radial velocity in the troposphere and lower

stratosphere, the ME estimator is as fast as the periodogram estimator whereas for

a height profile of the mean spectral width, it needs approximately the three-fold

computation time of the periodogram estimator.

Radio Science, in press, 1989.



623

OPTIMIZATION OF SIGNAL PROCESSOR PARAMETERS
AND A SUGGESTED SCHEME FOR THE PARAMETERIZATION OF SPECTRA

FOR THE INDIAN MST RADAR FACILITY

A. R. Jain

Radio Science Division
National Physical Laboratory

New Delhi 110 012, India

INTRODUCTION

MST radars are ground-based coherent Doppler radar systems, operating usually in the
VHF band, which are now extensively used in middle atmospheric research, One such facility is
under development in India for the study of atmospheric dynamics, turbulence characteristics and
stable layers of the atmosphere, etc. The range of the velocity measurement, velocity, time and
height resolutions would depend on the parameters of the signal processor. However, once the
spectrum is obtained, a procedure is required for scaling and parameterization of the spectra.
Various schemes have been implemented at different MST radar facilities.

In this note some of the design features of the signal processor of the planned Indian
facility are brought out. A suitable scheme for the parameterization of the spectra, that can be
adopted at the Indian facility is suggested.

SIGNAL PROCESSOR CHARACTERISTICS

Some of the specifications of the radar signal processor as per user's requirements are as
follows:

1. Pulse repetition frequency (PRF)

2. Pulse width (PW)

3. Maximum duty factor
4. Signal processing
5. Number of points for FFT
6. Maximum velocity

7. Velocity resolution

62.5 Hz to 8 kHz (binary steps)

Uncoded, 1-32 Its (binary steps)

Coded: 16, 32 laS (complementary coding,

band length = 1 Its)
0.025
Real time (FFF based)
64, 128, 256, 512 (selectable)
11, 22, 44 ms -1 (selectable) (Special provision
of 200 ms with velocity resolution of 2 ms -l)

0.1 ms -1 or 0.2 ms -1 (selectable)

Using basic principles, the number of samples that can be coherently integrated and number
of spectra that can be incoherently averaged to improve the signal-to-noise ratio (SNR) and to
match the above requirements are worked out.

PRE-FFT ANALYSIS (ON-LINE PROCESSING)

The following scheme is to be adopted in the case of the new facility.

Decoding the signal
Coherent integration of the predetermined number of sweeps
An appropriate weight function is applied to minimize the truncation effects
FFT using desired number of points
Detection of the spurious spectra before incoherently adding number of spectra
Incoherent addition of desired number of specga
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The SNR can be improved by summing the complex video samples from a number of
consecutive received pulses. For VHF radar at 50 MHz, the correlation time is ~ 1 s. If I is the
number of samples averaged, the SNR would improve by a factor of I. However, this time
domain averaging filters the input signal components, so that the maximum velocity that can be
deduced can be written as:

Vma x = _./(41T)orI= _.I(4TVmax) (I)

where _, is the radar wavelength and T is the interpulse period (i.e., T = 1]PRF). Once the
coherent integration has been carried out, the next obvious question is to decide the number of
points to be taken for FFT. If N, the number of coherently averaged points, is too small the
velocity resolution would be poor. If N is too large, although the velocity resolution would
improve, the time resolution would be poorer. STRAUCH (1983) has shown that for dwell time

T D (= INT) longer than kl2W (W = spectral width = 1 ms -l) there would be improvement in

velocity resolution but little improvement in SNR. The velocity resolution (AV) is given by

AV = ),1(2 TD) -- _(2 INT) or N = _/(21T.AV) (2)

Table 1 gives the Vmax and AV for various integration periods and sample lengths for
different pulse repetition frequencies (PRF) and pulse widths (PW). This table would be helpful in
planning the experiments. From Table 1 the following can be noticed:

i) IPP after coherent averaging is 31 to 125 ms.

ii) For AV ~ 0.2 ms-1 and Vmax = 48 ms -l, the number of points to be used for FFT is
512.

iii) For AV ~ 0.1 ms -I and 0.2 ms -l, the dwell time is 32 and 16 s, respectively.

Incoherently averaging a number of spectra before taking the moments further improves the
SNR. The factors which determine how many spectra can be averaged are the time resolution
requirement of the experiment from scientific consideration and gain in SNR. Of course, the first

gets priority over the second. For average velocity V ~ 10 ms -1, the time over which the spectra
can be fruitfully integrated is ~ 1 rain (JAIN, 1986). The net gain due to coherent and incoherent
integrationis ~ 20 dB.

PARAMETERIZATION OR POST FFr ANALYSIS

The method ofaveragedspectraisnow routinelyusedatmost MST radarfacilities.The
periodograrn P(f) of an equispaced sequence is the magnitude squared of the discrete Fourier
transform (DFT). The P(0 is a weighted and aliased estimate of the spectrum. A small number of
parameters such as noise power (Pn), signal power (Ps), the Doppler shift (fs) and spectrum width
(Ws) give complete information on the spectra.

The suggested scheme for pammeterization is shown in Figure 1. This part of the analysis
can be done ON-line or OFF-line, but recommended (JAIN, 1987) to be carried out ON-line.

(i) Determination of noise power. Several methods are available for determining the
noise. However, the method used at Poker Flat, based on the statistics of Gaussian random
variables given by H/LDERBRANDT and SEKHON (1974), appears to be most appropriate.

(ii) Removal of clutter and noise base. For VHF radars, clutter is expected to have zero
Doppler and small width. Therefore, to start with, it is proposed to reject zero frequency point and
substitute the same with the average of two neighboring frequency points. However, difficulty
may arise in the case when the signal also has small Doppler.
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Fig. 1. Flow chart of scheme (post FFT) for parameterization of spectra.

Once the noise power is determined as discussed above, the same can be easily subtracted.

(iii) Detection of the signal. The unwanted spikes are removed by applying a median f'dter
which examines a few points either side of a data point. The data point is replaced by the median
value ff it was found to deviate too much from the median. Some fixed spikes are more
conveniently removed by applying a notch filter. After despiking the spectra, to enhance the
detectability, a certain amount of smoothing of P(f) is necessary. This could be 3 point running
mean over P(0 or some similar function which has to be chosen carefully.

After smoothing, smoothed spectra can be used to extract the initial Doppler profile. A
threshold level has to be carefully chosen for identifying the signal from the noise. The
atmospheric returns show a temporal and spatial continuity. This would further help in identifying
thesignalfrom spuriousechoes.

(iv) Parameterization. Once the initial Doppler profile has been obtained the signal
parameters are obtained by computing the zeroth, first and second moments of P(f). To reduce the
effect of smoothing, the moments are taken of the spectra before smoothing. There are many
approaches for determining the moments of the spectra. In one approach the Doppler width is
chosen from the previously determined value and the first window width is varied. In the second
step the window width is kept fixed and Doppler shift is then varied. The iteration can be repeated
if necessary. Full Gaussian fitting is also used at the Arecibo and MU facilities.
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DISCUSSION

1. Analysis of the on-line processing shows that it should be possible to achieve AV ~
0.1/0.2 ms and Vma x - 12/24/48 ms -1. It is, however, to be remembered that them would be a

range ambiguity for PW < 8 _s and PRF > 2 kHz. A special feature of the on-line processing to
be used is that decoding is done prior to coherent integration. This would enable the radar to be
used for incoherent applications as well.

2. A simple scheme for scaling and parameterization of the speca'um is suggested.
However, the following points need to be considered:

a) Coherent integration, finite beam width and wind shear introduce spectral broadening.
Therefore, to obtain the true signal spectral width, proper deconvolution function should be used
(HOCKING, 1983).

b ) The selection of smoothing function is important. Undersmoothing would not improve
detectability, whereas oversmoothing would tend to flatten the signal peak itself.

c) Threshold signal level is used for identifying signal from noise (after smoothing), i.e.,
for detection/nondetection decision. Therefore threshold level should be chosen carefully.
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1 Introduction

In MST (Mesosphere-Stratosphere-Troposphere) radar observations there are several tech-
niques to estimate parameters such as echo power, radial wind velocity and spectral width.

For the return signal of MST radars we can assume that a power spectrum of the radar returns

shows a Ganssian distribution which is described as follows (e.g., WOODMAN, 1985),

P

where / is frequency and P, .fd and a are echo power, mean Doppler shift and spectral width,

respectively.
One of the techniques to determine these parameters is a moment method. The zeroth,

first and second moments of the spectral density correspond to the echo power, mean Doppler

shift and spectral width, respectively. Another technique is a least squares fitting method.
A Ganssian spectrum is fitted to the observed one so as to minimize the squared sum of the

residual by changing the parameters. The spectral parameters may also be estimated from the

autocorrelation function of the time series of the radar returns. The radial velocity is estimated

from the phase angle of the autocorrelation function at the first lag (e.g., WOODMAN and
GUILLI_N, 1974).

The performance of many estimators were compared by ZRNIC (1979) and WOODMAN

(1985), and the performance of the pulse-pair method was shown to be better than that of the
moment method at low signal-to-noise ratio (SNR) although they are the same at infinite SNR.
ZRNIC (1979) also showed the theoretical minimum estimation error (Cramer-Rao bound) of

spectral parameters which is obtained by maximum-likelihood (ML) estimators. However,
there are no theoretical calculations for the performance of the fitting method, which may be
expected to show better results compared with other techniques especially in the region with
low SNR.

In this paper, we discuss the performance of the fitting method by using the computer

simulation technique, and compare it with the moment method. We also investigate problems

which may occur with the fitting method when it is applied to the power spectrum of a
random process, and show a possibility to improve the performance of the fitting method and

to approach the Cramer-Rao bound.
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2 Model spectrum and computer simulation technique

In our calculation, we have calculated a power spectral density of S(fi) + PN at 128 discrete
frequencies fi, where P_ is noise level density. For convenience, the Doppler shift fd is assumed

to be zero. The SNR is defined as the power ratio between the signal and the noise as follows,

Su = P/(MPN),

where M = 128 is the number of discrete frequencies.

normalized frequency and spectral width

F = f/Af,

w = ,r/Af,

where Af is a frequency interval between the discrete spectral components.

(2)

In the following sections, we use

(3)

(4)

The output of the receiver, which is a time series of data, is a random process with a

Gaussian distribution. Because the Fourier transform is a linear transformation and power
spectral density is a squared sum of both real and imaginary parts of the spectral component,

the power spectral density has a statistical fluctuation with a x2-distribution (e.g., BENDAT

and PIERSOL, 1971). The statistical fluctuation of the spectrum is simulated by generating
random numbers with x2-distribution, and the model power spectrum is calculated as a prod-

uct of the Ganssian spectrum and the statistical fluctuation. The amplitude of the statistical
fluctuation can be reduced by averaging successive power spectra, which is called incoherent

integration. Thd standard deviation of the model spectrum is proportional to the spectral
density itself and is equal to S(fi)/,fff, where n is number of the incoherent integration.

Spectral parameters are estimated for each spectrum by using both the moment and the
least squares fitting method. First, the generated spectrum is smoothed by using a numerical

low pass filter with a -3dB cutoff period of 20Af. We find the fi'equency point with the largest
spectral density in the smoothed spectrum, which is used as the first guess of the Doppler shift.
After subtracting the real PN from the original spectrum, we have applied both techniques to

64 spectral points around the first guess.
In order to obtain the estimation errors of parameters, we have calculated 500 model

spectra and obtained the bias br and variance tr_ of the estimates. We define the estimation
error of the Doppler shift, EF, as follows:

= + (5)

This is called the "rms (root mean square) error" (BENDAT and PIERSOL, 1971).

3 Estimation error at finite signal-to-noise ratio

Figure i shows Er for both the fitting and moment methods versus SN when n = 5. When

W = 2 for the fitting method, Er is 0.44 in the region with large S_v. The fitting is successful
at S_ > 10-1, but we recognize a rapid increase of Er below this level. The wider spectrum

causes a larger estimation error of the Doppler shift; e.g., Er = 0.91 for W = 10 at SN = 104.
However, EF starts increasing at a similar S:_ to that for W = 2. It is noted that estimation
errors are almost constant with Su above this level. Comparing the results with that of the

moment method, at high SN, the estimation error of the moment method becomes less than
that of the fitting method; at SN = 10 4, EF = 0.25 and 0.52 for W = 2 and 10, respectively.
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Figure 1: Variation of the estimation error of the Doppler shift versus signal-to-noise ratio for

n = 5. Circle and X symbols show results for W = 2 and W = 10, respectively. Solid and

dotted lines correspond to the errors obtained by the fitting and moment methods, respectively.

The estimation error of the moment method is approximately 60% of the fitting method in

this region. As SN decreases, the estimation error of the moment method gradually incre_es.

The errors of moment method at 10 -1 < Sjv < 1 are almost the stone as that of the fitting

method for W = 10, and worse for W = 2. There is no significant bias shown in the low

SN region. Below SN = 10 -1, both methods show a rapid increase of the estimation error.

The large error is obtained because the numerical filter captures the highest peak randomly

distributed in the fluctuating noise level, and accepts it as the first guess of the Doppler shift.

When we assume a constant distribution of EF within the spectral window of F = +64, the

standard deviation is approximately 37, which is consistent with EF ._t SN = 10 -2.

4 Estimation error at infinite signal-to-noise ratio

Figure 2 shows the estimation error of the Doppler velocity versus number of incoherent

integrations of the spectra. The estimation error of the Doppler shift is almost proportional

to vt-W, and inversely proportional to v_. At infinite SN, the estimation error EF of Fa can

be described as

EF = kvF-W-_, (6)

where k is a constant. From the data shown in Fig. 2, k = 0.63 and k = 0.38 for the fitti_lg

and the moment methods, respectively.

In order to determine the estimation error of the radial wind velocity, we put physical

dimensions to the normalized estimation error EF. The estimation error e_ (ms -]) of radial

wind is

¢_ = K V[-_./To, (7)

= kv/_ is a constant, To = nT is the total observation period to obtain a set ofwhere K

spectral parameters, T (s), ,k (m), and a_ (ms -z) are the length of the time series of the data,

the wavelength of the radar, and the spectral width, respectively. Eq (7) shows thaK if S_¢
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W = 10, respectively. Solid and dotted lines correspond to the errors for the fitting and
moment methods, respectively.

is infinite, the observation period is the only factor that we can choose when we observe the

radial velocity by using the radar.
The coefficients K for the estimation errors expected in the MU radar observations (A =

6.45 m) are K = 1.1 and K = 0.67 for the fitting and the moment methods, respectively.
When we observe the radial wind velocity every one minute by using the fitting method,
e_ = 0.12 ms -1 for a_ = 0.7 ms -1 which is typical spectral width in the stratosphere, and
e, = 0.20 ms -1 for a, = 2.0 ms -1 which is typical in the mesosphere.

We infer that the larger errors with the fitting method occur because of the nature of
the statistical fluctuations of spectral coefficients. Because the amplitude of the statistical

fluctuations are proportional to the spectral density, components around the spectral peak

have larger fluctuations than the spectral components with low spectral density. Thus, the
sum of the squared residual is almost solely determined by the spectral components around

the peak, which implies that we actually use only a portion of the spectrum when we estimate

the parameters by the fitting method.

5 Lower bound of the spectral parameter estimation

The least squares fitting method gives maximum-likelihood (ML) estimates when the statistical
fluctuations of the samples at different frequency points are uncorrelated, and the samples at

each frequency point have Ganssian distribution with known variance (e.g., BRANDT, 1970).
The second condition is not satisfied in the least squares fitting applied to the power spectrum.

We use an uniform weight for all spectral components although the variance of the spectral
components is proportional to the spectral density itself. Also, the statistical fluctuation

shows the x2-distribution. The xKdistribution is not symmetrical with respect to mean of the
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Figure 3: The same as Fig. 2 except for the estimation error of the Doppler shift obtained by

the parabolic fitting in the logarithmic domain. Dotted lines show the Cramer-Rao bound of
the ML estimator shown by ZR.NIC (1979).

spectral coefficient, and tends to have larger spikes on the higher side in its distribution. The
spikes of the statistical fluctuations which appear around the peak of the Gaussian spectrum

cause a large bias to the sum of the squared residual, and set the fitted spectrum highe r at the
center and narrower than the true width. The estimation of the Doppler shift is also affected

by the positions of the spikes.

Since the amplitude of the statistical fluctuation is proportional to the spectral density
itself, we can equalize the amplitude of the statistical fluctuation by ta_:ing the logarithm of the

spectral density. The variance of the samples at different frequency points become constant,
although its statistical distribution is not Gaussian. When S_v --0 co, we can estimate the

spectral parameters by fitting a parabolic curve to log[S(F)] with axl uniform weight. We
have simulated the estimation error of the Doppler shift for this method. The result of this

parabolic fitting is shown in Fig. 3. The estimation error obtained by this method is, for
example, approximately 20 times less than that by the moment method when W = 3. The
dashed line is the theoretical lower bound (Cramer-Rao bound) obtained for the error expected
to the ML estimator (ZRNIC, 1979). The estimation error of the normalized Doppler shift

agrees very well with the Cramer-Rao bound. The estimation error i_; inversely proportional
to Vrn. Also, we recognize that it is almost proportional to W 2. This is different from the v/W

dependence shown in Eq. (6), but agrees well with the theoretical formula given by ZRNIC

(1979). The improvement of the estimation error obtained by this fitting in the logarithmic
domain is larger for spectra with narrow width than spectra with larger width.

In theoretical evaluations of the accuracy of the pulse-pair or moment method (DOVIAI<
and Zl:tNI(_, 1984; WOODMAN, 1985), the accuracy was shown to be comparable to the

Cramer-Rao bound. It is because they replaced the sampling intervaJ by the signal correla-
tion time when they calculate the Cramer-Rao bound. They have mentioned that a sampling

faster than the correlation time is redundant, and only introduces hi_,her frequency compo-
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nentswith smallspectraldensity.However, for a Gaussian spectrum with infiniteS#, every

spectralcomponent shouldhave significantinformationno matter how farthe component is

from the spectralpeak. This impliesthat we can arbitrarilyincreasethe number ofindepen-

dent points.inthe spectrum,and improvethe performanceofestimatorsasmuch aswe wish.

The performance of the moment and the fittingmethods in the lineardomain isrestricted

becausethe equivalentnumber ofeffectivespectralcomponents islimitedaround the spectral

peak accordingtothe spectralwidth.The resultclearlyshows that at infiniteS#, even very

highfrequencycomponents ofthe signalspectrum with very smallamplitude have substantial

importance,and can be used toderiveitsspectralparameters.In the lineardomain, contri-

butionfrom thesecomponents are masked by the much largerfluctuationsof the frequency

components around the peak. Our simulationshows thatthe parabolicfittinginthe logarith-

mic domain isone techniquetorealizethe lowerbound ofthe ML estimatorby making useof

such high frequencycomponents.

This method is not realistic for real data with finite SN. As cited by ZRNI(_ et al. (1977),

the logarithmic fit is better if spectra are free of artifacts. However, the spectra are contam-
inated and distorted by truncation distortion, aliasing effects, quantization error and so on.
The estimation error of the noise level will also affect the result. However, if we produce a

fitting routine for log[S(F)] which contains these contaminations, it should show much better

performance than the existing methods.
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1. INTRODUCTION

In recent years there has been considerable interest in a technique of spectrum analysis
called the Maximum-Entropy Method (MEM), developed about 1966 by J. P. Burg. This
method appears to offer results which have higher resolution, higher accuracy and smoother
spectra than traditional methods. It is important to have a reliable method of spectrum analysis
in real-time processing of mesosphere-stratosphere-troposphere (MST) radar signals, In a
conventional case the traditional periodogram method is used in MST radar data processing. A
question that arises is whether MEM is an appropriate spectral estimator for MST radar signals.
How about the degree of improvement obtained in the spectral resolution and the signal
detectability? KLOSTERMEYER (1986) reported f'trst results of applying MEM and MLM
(maximum likelihood method) to estimate signals of VHF radars, and to compare the accuracy
of those methods with the conventional periodogram method. He found that at large signal-to-
noise ratios (S/N > 100), differences between the Doppler shift estimate are one order of
magnitude smaller than the frequency resolution of the periodogram. At moderate signal-to-
noise ratios (0.3 < S/N < 10), MEM and MLM estimates have significantly higher accuracies
than the periodogram estimates, with the largest differences in accuracy occurring just above
S/N = 0.3. In contrast to the periodogram method, MEM and MLM clearly indicate a limiting
signal-to-noise ratio (S/N _ 0.3) below which the Doppler shift estimates are dominated by
noise rather than radar signals.

It is the purpose of this paper to primarily investigate MEM spectral estimates to MU
radar observations. We will compare the conventional periodogram method and MEM with the
same MU data sets, and discuss improvement of the spectral resolution and signal detectability
in the MEM.

2. DATA AND METHOD

The MU radar, located at Shigaraki, Japan, is an MST radar with the operating
frequency of 46.5 MHz. The troposphere-stratosphere data used here were taken at 1241-
1242 JST on 18 December 1987 (JST: Japan Standard Time). The antenna beam was steered
every interpulse period (IPP) to two directions, i.e., 10 ° off zenith toward the east and vertical.

IPP was 400 I_s. In each direction 64 heights in the range 5.4 - 24.5 km were sampled at 300-
m intervals. In order to improve the signal-to-noise ratio, the number of coherent integrations
was up to 80. The time series of each signal sample consists of 512 complex points at each
height and beam direction.

Using this data set we performed the results of the conventional periodogram method
and maximum entropy method. In the conventional periodogram method power spectra were
calculated with an FFT algorithm, then spectral parameters (echo power, radial wind velocity
and spectral width) were derived by a nonlinear least squares Gaussian fitting method. The
spectral resolution of the FFT method is determined by the length of the data sample.
However, a power spectrum obtained by MEM is a continuous function of frequency which
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may be evaluated over an arbitrary grid of any density. The maximum entropy method
produces a smoother spectrum with higher resolution than the FFf method.

3. RESULTS

Figure 1 shows the results of the FFT method and MEM for a sample obtained in the
10° off zenith toward the east at an altitude of 8.4 kin. Figures l(a) and (b) show the power
spectra of the FFT method and MEM separately. In Figure l(a) the dashed curve indicates
nonlinear fitting curve of Gaussian spectra of the FFT method. It can be seen that the FFT
method and MEM give almost the same Doppler shift estimate. The power peak near zero-
Doppler-shift indicates ground clutter echo. The other power peak with double-peak structure
indicates atmospheric signal. We can see clearly the double-peak structure of atmospheric
signals in both methods. Due to the frequency resolution limitation of the FFT method, the
double-peak structure cannot be distinguished by a nonlinear fitting curve. The double-peak
structure of the atmospheric signal is an interesting phenomenon, about which detailed
discussion is given below.

As in most cases, the vertical velocity of atmospheric motion is very small, the
atmospheric echo and ground clutter echo often overlapped in the zenith observation, as seen in
Figure 2(a). So there is a difficulty in estimating very weak vertical velocity with the FFT
method. For the MEM with higher frequency resolution, there will be some improvements in
the atmospheric vertical velocity detectability, as seen in Figttre 2(b).

We will think of the double-peak structure below. From Figure 1 we can see clearly
that the two-peak structure obtained from the MEM can be roughly identified with the result of
the FFT method. But from only the FFT method we cannot find the clear double-peak
structure due to its lower frequency resolution. It has proved that the double-peak structure is
a real characteristic of the atmospheric signal rather than the spontaneous line splitting in
maximum entropy power spectrum. To understand fully the physical significance, we
investigated the variations of the double-peak structure obtained from the MEM with height and
time. Figure 3 shows the variations of the double-peak structure at altitudes 8.4 - 9.9 km and
shows the emerging, disappearing and transferring of the dominant peak of the double-peak
structure. Figure 4 shows the power spectrum of the four time sections which the time series
of 512 complex points divided into, a time section consists of 128 complex points. From
Figure 4 we find the transferring of the dominant peak of the double-peak structure with time.
The variations of the double-peak structure reveals the detailed structure of the atmospheric
motion, such as the thin layered structure, the small-scale turbulence and so on. Whereas the
FFT method applied to the same data sets produces power spectra with large statistical
fluctuations which may obscure the true spectral variations, as seen in Figure l(a). The MEM
would be a useful method for investigating the detailed smmture of atmospheric motion.

4. CONCLUSIONS

In the previous section we described the spectral analysis of the MU radar observations
with both the MEM and the FUr method. All the results we have obtained lead us to conclude:

a. There is excellent agreement between the radial velocity estimations calculated by the
MEM and the FFT methods. Therefore the MEM is suitable for MST radar.

b. It is found that the MEM is useful to get the detailed structure of the spectra which
may be useful to understand the atmospheric structure.

c. Because of the higher resolution of MEM, we have the possibility to study the way
of eliminating ground clutter and improving the detectability of weak vertical velocity.

In the present case study, the ratio of the computer CPU time for FFT and MEM is
about 1. The prediction error filter length of MEM is determined by the final prediction error
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(FPE) criterion, about 15. Since MEM has the advantage of using shorter time series, it has

the potential for operational application.
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UHF wind profilers can observe, in principle, down to very low altitudes

(on the order of i00 meters above the surface). However, ground clutter from

nearby stationary objects such as trees and power lines can be a serious

problem when these objects are moved back and forth with respect to the radar

by surface winds. This movement causes the ground clutter Doppler spectrum to

spread around zero frequency so that the clutter signal may overwhelm or dis-

tort the wanted spectrum of atmospheric returns in the lowest altitudes.

From May to July 1988 a small 915 MHz boundary layer radar was operated at

the Flatland field site in Illinois. This site is surrounded at a range of

about 150 meters by vertical wires suspended from 20 meter tall poles that are

part of an old antenna which is no longer in use. Some of the vertical wires

are loose and move freely in the wind providing a controlled "worst-case"

close-range ground clutter as observed by the 915 M}{z radar. We noted that the

intensity and spread of the Doppler spectrum of the clutter from the moving

wires increased in a predictable way as the surface wind speed measured at the

site increased. This allowed us to develop a template of the Doppler spectrum

of the unwanted clutter as a function of surface wind speed. Observed Doppler

spectra were then "cleaned" after the fact by noting the recorded wind speed

and subtracting the corresponding template values from the spectra.

This technique is demonstrated in Figs. I and 2. A Doppler spectrum with

ground clutter obtained at a surface wind speed of 5 m/s is shown in Fig. i.

The contours show S/N in 4 dB intervals above the background noise level. The

clutter due to the moving wires is centered around zero radial velocity and

overwhelms the wanted clear-air return (on the left side of the spectrum) at

the lowest altitudes. The first moment of the Doppler spectrum at each height

is shown by a vertical tick mark on the horizontal bar. Note that the first

moment is progressively biased toward zero radial velocity as height decreases

below 1 km. Fig. 2 shows the same spectrum after the template values for

ground clutter at this wind speed are subtracted and the first moments recalcu-

lated. In this case the first moments track the clear-air returns and are not

biased by ground clutter.

The technique of clutter subtraction described above worked well in the

well-defined clutter environment at the Flatland field site, but it remains to

be determined if the method will be satisfactory in more general clutter en-

vlronments. Although this technique can be used to "clean" spectra obtained

from sites with bad low-level ground clutter, the best approach is to locate

the radar away from nearby clutter-producing structures. If this is not pos-

sible, the low-elevation antenna response to clutter producing objects may be

reduced by shielding or screening the antenna.
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RANGE SIDELOBE PERFORMANCE IN A SIMULATED PULSE COMPRESSION RADAR
SYSTEM USING COMPLEMENTARY BIPHASE CODED SIGNALS

Y. G. K. Patro, and K. R. Suresh Nair

SAMEER, IIT Campus
Hill Side, Powai, Bombay 400 076, India

INTRODUCTION

The complementary biphase coded signal is known to result in zero range sidelobes for a
stationary point target in an ideal situation. But the system parameters like receiver bandwidth,
delay distortion, amplitude and phase droop within the pulse can degrade the range sidelobe
performance in a practical radar system.

The Indian MST radar which is using a complementary biphase coded signal is modeled to
analyze the effects of various factors like transmitter bandwidth, signal-to-noise ratio, initial delay,
delay distortion, amplitude droop and the intrapulse phase distortion, on the range resolution
characteristics of the radar when coded pulse transmission is used. The real-time waveforms at
different stages and the ambiguity diagrams are plotted. The simulation is performed for an eight-
bit complementary code sequence for convenience, though a 16- or 32-bit code is planned to be
used in the radar.

DESCRIPTION OF THE MODEL

The radar system is modeled as shown in Figure 1. The reference oscillator generates 5-
MHz signals and is phase modulated in the modulator which receives the code from the code
generator. The code generator generates 8-bit complementary code sequences, A, B, A, I_, namely
(11101101, 11100010, 00010010, 00011101), with '1' signifying 0 deg phase shift and '0'
signifying 180 deg phase shift (LORIOT, 1983). The signal waveform is considered to have a
pulse width of 8 microseconds and a code subpulse width of 1 microsecond. The code clock (1
MHz) is considered to be in phase with the reference at 5 MHz. The spectrum of the transmitted
signal is calculated over a period of 32 microseconds, by padding 'O's for 12 microseconds on
either side of the transmitted pulse and subjecting the time domain data to a 2048 point FFT. This
spectrum is then multiplied with the transfer function of the bandpass filter. The filter is assumed
to have in the passband a rectangular amplitude characteristic and a linearly sloping group delay
characteristic as shown in Figure 2. The time domain response of the filter at its output is then
obtained by subjecting this to a 2048 point inverse FFT. The linear operations of up converting to
a higher frequency of 53 MHz before transmission and subsequent down converting to 5 MHz
after reception were considered to have no effect on the signal characteristics.

It is assumed that the received pulse from a stationary point target would be exactly
identical to the transmitted waveform obtained above, except that it is added with random noise.
Random noise is generated by first generating a sequence of 2048 random numbers representing
noise samples at every 1/64th microsecond over the signal period of 32 microseconds. The noise
samples are then scaled to suit the peak signal-to-noise ratio specified, with peak signal amplitude
as unity and then added with the 2048 signal time samples. The random noise that is so simulated
may be considered to have a bandwidth of+ 32 MHz.

The video outputs are obtained by modeling the mixer as a true multiplier and the video low
pass filter as having a rectangular amplitude and a linearly sloping delay characteristic. The I and Q
channel outputs are thus obtained by multiplying the modeled received signal with in-phase and
quadrature-phase-shifted 5 MHz reference signals, respectively.

The video outputs are then sampled with a 1 microsecond sample clock over the 32
microsecond period in 8 channels. The sampling period in each of the above 8 channels is
considered to be staggered by 1/8th microsecond such that the signal may be reconstituted after it
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Figure 1. Simulated model of the signal processing scheme of MST radar.
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passes through the various signal processing operations by virtue of the 8 samples per
microsecond interval. Decoding operation is done in each of these 8 channels for the sequences A,
B, _, and ]_, respectively (SULZER and WOODMAN, 1983) and the outputs in each of the 32
range bins is integrated over four interpulse periods. The output in the 8 channels is thus used to
get the range ambiguity diagram by placing the respective range bin outputs at 1/8th bin intervals.

The above model has been used to analyze the effects of various factors like
transmit/receive bandwidth under high and low signal-to-noise ratios, and delay distortions in
filters. Transmitter irregularities such as amplitude and phase droops within the transmit pulse
period are modeled by multiplying the above amplitude and phase versus time characteristics with
the instantaneous amplitude and phase of each time sample in the transmitted signal waveform.
Thus the effects of these irregularities have also been studied.

The details of the algorithm and the flow chart can be found elsewhere (PATRO and
SURESH NAIR, 1988).

RESULTS

Figure 3 shows the time domain waveforms of the transmit signal, I and Q video channels
signal for a high SNR situation and a transmit bandwidth of 1.7 MHz and video bandwidth of 0.85
MHz.

Figures 4(a) and (b) summarize the effect of transmit bandwidth on range sidelobes under
situations of a high SNR and a low SNR (of-10 dB), respectively. The following inferences may
be drawn from these figures.

(a) The (nearly) unrestricted bandwidth case is ideal in the sense that there are no range
sidelobes, but it also allows significant noise to enter into the decoded output and final SNR is
poor.

(b) A low transmit bandwidth of 1 MHz and video bandwidth of 0.5 MHz may be ideal
from the point of view of minimum interference with adjacent channel and noise suppression but it
gives rise to an unacceptable 16 dB sidelobe level and poorer range resolution.

(c) A transmit bandwidth of 1.7 MHz and video bandwidth of 0.85 MHz may be
considered to be a suitable compromise.

Figure 5 shows that a differential delay of 100 nanoseconds in the transmit path and the
same in the receive path make the range sidelobe on one side rise to a level of 20 dB below the
main peak.

Figure 6(a) shows that amplitude droop, considered alone may not contribute to significant
performance degradation, except that the far off sidelobes get prominent. Figure 6(c) shows that a
phase droop of 30 deg within the pulse would increase the range sidelobe to about 20 dB below the
peak.

CONCLUSION

The above simulation studies indicate the performance of the system under actual non-ideal
conditions encountered in a physical radar system. They help in drawing the subsystem
specifications to meet a desired system goal.
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1 Introduction

It has been found that a sensitive VHF Doppler radar can detect precipitation echoes si-

multaneously with echo from tile ambient atmosphere (Fukao et al., 1985). Wakasugi et al.
(1986, 1987) investigated a computer algorithm to derive parameters of drop-size distribution

as well as the mean vertical velocity and fluctuations due to turbulence from the radar spectra.

Namely assuming an exponential form which was suggested by"Marshall and Palmer (1948) for
the drop-size distribution and a Gaussiau distribution for the atmospheric turbulence spectra,

they have applied least-square fitting to the observed spectra.
This method gives rise to reasonable parameters, in case good initial values m'e used for

the parameters to be estimated. Their algorithm needed, however, human intelligence in

determining these initial values except when the rain echo component is clearly separated
from the atmospheric echo component in the observed power spectra. We have extended

their method to find appropriate initial parameters purely by computer in order to enable

us to deduce the drop-size distribution and vertical atmospheric velocity automatically from
original data by using computer.

We have also quantitatively investigated the capability of the MU radar in measuring
various pm'ameters associated with precipitation, such as the number density of rain drops,

the drop-size distribution, and the maxinmm fall velocity by means of numerical simulations.

We present the accuracy of individual parameters in terms of the number of incoherent
integration, and then compas'e the resultant rainfall rate with that measured on the ground.

2 Derivation of Rain Parameters from Echo Power Spectra

The Doppler spectrum S(v) of rain echo in the absence of turbulence echo and atmospheric

motion is represented by

S(v) = C. N(D)D6[_{, (1)

where C is a constant which represents all factors in the radar equation, v(D) is the fall
velocity (positive upwaxd) of rain drops with diameter D, and N(D) is the number density
distribution of the drops, which can be approximated by the Marshall-Palmer distribution:

{ N oexp(-AD) for vm_ < v < 0 (2)N(D)- O for v<vm_, O<v
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where No is a constant proportional to the number density of rain drops, A is the spectral

index of the drop size distribution, and vm_x is the maximum drop fall velocity. For the case

of VHF radars, another spectrum due to turbulence scattering with comparable or larger
amplitude is superimposed on the spectra of (1). The spectral shape of this component is
usually approximated by a Ganssian, whose width represents turbulence motion inside the

scattering volume and other broadening factors such as the beam broadening. If we assume

that the rain drops closely follow the atmospheric motion, the spectra of (1) is convolved with

this Gaussian in the presence of turbulent motion. Further, the observed spectra is distorted
due to truncation of the time series in applying the periodogram method as used by the MU

radar real-time data processing.
Taking all these effects into consideration, we can derive parameters in (2) from an ob-

served spectrum by comparing the observed and theoretical spectra in a least squares manner.
The actual parameters to be determined are the three parameters in (2), three parameters

which describe the Gaussian turbulence spectrum, and the background noise level. Since the

theoretical spectrum is nonlinear with respect to those parameters, a nonlinear least squares
fitting algorithm (e.g., Bard, 1974) is used. The algorithm expands the theoretical function
into a Taylor series around some suitable set of initial values of the parameters, applies the

linear least squares fitting procedure recursively revising the initial values.

The initial values for the three parameters of the atmospheric turbulence component can
be obtained fairly easily by taking three spectral moments around its peak. On the other hand,

the three parameters for the rain component are more difficult to choose since this component
is usually weaker than the turbulence component, and not well separated in frequency either.

The fitting procedure is repeated for all combinations of three different values of the three

parameters, and the one which gives the minimum variance between the observed and the
theoretical spectra is used.

Figure 1 is an example of observed echo power spectrum (irregular curve) and the best-fit
theoretical one (smooth curve). The observed spectra were averaged over 1 rain. The height

resolution is 150 m. The larger peak around zero-Doppler is the atmospheric turbulence

component, and the smaller peak with negative (downward) Doppler velocity is the rain echo
component. A small bump at around +8 ms -l is an image of the rain component due to

nonlinearity of the A/D converter in the presence of strong ground clutter, which is subtracted
in this figure. The noise level is slightly overestimated probably because of this bump.

3 Intrinsic Accuracy of the Estimation

As shown in Fig 1, the observed spectra always contain random fluctuations based on the

statistical nature of the scattering process even in the absence of the background noise. The
magnitude of the fluctuation is proportional to the spectral density, and can be reduced only by

averaging a larger number of independent observations. This fluctuation is the most important
source of the intrinsic error in estimating the rain parameters. Since the fitting procedure is

highly nonlinear, the error in the derived parameters cannot be estimated directly from the
residual of the fitting, as can be done for the linear least squares fitting.

We have evaluated the accuracy of the estimated parameter by means of numerical simu-

lations. We generated theoretical spectra according to (1) and (2), convolved with and added
the turbulence component, added statistical fluctuations expected for real data, and smeared
to simulate the effect of finite data length in the periodogram method. We gave the spectra to

the fitting program, retrieved the spectral parameters, then compared the estimated param-
eters with those used to generate theoretical spectra. We repeated simulations 50 times for
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Fig. 1. Example of observed echo power spectrum (irregular curve) and the theoretical

one (smooth curve) determined by the nonlinear least squares fitting procedure.

each set of parameters with different random numbers in order to examine the mean value of

the errors.

Figure 2 shows an example of the result of this simulation versus the number of incoherent

integration Ni¢oh (averages of independent power spectra). The model values given are No =

6 x 103, A = 25 cm -], and Vm_ = -7 ms -] , which are typical values for a relatively strong rain

condition. The left panels are the estimated mean values of No, A, and v_,_, respectively from

top to bottom, and the right panels show the standard deviation of the estimated values of

corresponding parameters from the given values. The dotted line in the right panels indicate

a slope proportional to N_o 1/2, which is the rate of improvement expected for averages of

independent random numbers.

The left panels indicate that the estimated values converge to the model values when the

number of averages increases, while the right panels show that error is quite large, especially

for the estimation of No. For example, error amounts to about 100% for No when Nicoh = 6,

which corresponds to a time resolution of 1 min if the average is made in time. Apparently, a

larger number of averages is required in order to obtain reliable estimates. This proportionality

suggests that a reasonably good accuracy of 10% can be achieved by averaging over i0 min of

time and 1.5 km of height ranges.

4 Comparison with Ground Measurements

Although the evaluation made above considers all of important statistical and numerical factors

which affect the estimates, it assumes that the strength of rain and the drop size distribution, as
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well as the background atmospheric conditions, do not change during the incoherent averaging.

Fluctuations in the wind velocity, for example, broaden the observed spectra and makes the

estimation of the rain parameters harder.
We have made direct comparisons of the rain intensity deduced from the MU radar data

with that measured on the ground by a high-resolution rain gauge located at the MU radar
site. The top panel of Figure 3 indicates the detection of rain echoes by the MU radar for

a series of observation made during a rainy condition. Large dots denote that the spectral
component due to rain echo was identified by tlle fitting program, and small dots denote that

only tile atmospheric turbulence component was found. Blank area means that the no echo
w_a,_detected. The middle and lower panels compare the rain intensity measured by the rain

gauge and by the MU radar, respectively. Both values are 10-rain mean intensity expressed
in the unit of ram/hour. The rain intensity calculated from the parameters we derived from

the MU radar echo-power spectra by our algorithm are also averaged over 1.5-3.5 km height
region. Since the echo power of the MU radar does not have an absolute calibration, the

vertical scale of the bottom panel is adjusted to match that of the middle panel.
The ground and radar measurements agree within a factor of 2 for most of the period,

and the correlation coefficient between the two is 0.87. It should be noted that some of the

discrepancies are attributed to tile advection of the rain cells between the height measured by

the radar and the ground, comparison between the top and the middle panels indicates that
the minimum rain intensity detected by the MU raxlar is about 1 mm/l:our.

5 Summary

Accuracy of a fully automated estimation procedure of rain parameter,'; from the MU radar
data was evaluated by numerical simulations, and the estimated rain intensity was compared

with that measured on the ground. The intrinsic accuracy of the est:imation procedure is

expected to be about. 10% for the rain intensity when the data is averaged over 10 rain in time
and 1.5 kilt in height. Correlation between the radar and the ground measurelnents of rain
intensity was 0.87 for a 12-hour observation.
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Summary

An exact cancellation of correlation sidelobes in high-resolution atmospheric
radar experiments with complementary code pairs is not attained due to
nonlinearities in radar transmitter, and due to poor coherence of atmospheric
targets. Quasi-complementary code sets (QCCS) are sets of binary sequences
with low correlation sidelobes. These sidelobes nearly cancel out in the
correlation function accumulated over a QCCS. Sulzer and Woodman (1984)
used an intensive, but partial, computer search at Arecibo to find 32-bit
QCCS of size 48 at a maximum residual correlation sidelobe level of 4. We
have conducted an exhaustive computer search through all 32-bit sequences
for a base set of 844 sequences (and their binary complements) with a
maximum correlation sidelobe level of 3. Codes in the base set are then

combined to generate QCCS of specified size, and a maximum residual
correlation sidelobe level of 2. The base set is sufficiently large to allow
more stringent selection criteria using, e.g., lower r.m.s, correlation
sidelobes and better Doppler ambiguity characteristics.

Introduction

The objective of pulsed-Doppler radar experiments for probing the middle
atmosphere is to detect thin regions of weak turbulence and to measure their
bulk velocity. The measurement accuracies for turbulence intensity and
radial velocity depend on the received signal-to-noise ratio (SNR). To
maximize the SNR, widest possible radar pulses should be used within the
peak and average power limitations of the transmitter. Yet for improved
range resolution, which is inversely related to the pulse width, pulses should
be as narrow as possible within the allowed transmitter bandwidth.

These contradictory requirements on range resolution and SNR can be
attained with the use of pseudo-random binary phase codes in transmission,
and an inverse operation, or decoding, on the received signal Effectively, a
long pulse at a constant cartier power level is transmitted. At .subintervals or
bauds within the pulse, the phase of the carrier is encoded or modulated by
+90 ° or -90 ° in accordance with a pseudo-noise binary sequence. In the
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inverse operation of decoding, the received signal is cross-correlated with
the binary sequence. As different subintervals within the transmitted signal
are nearly uncorrelated, the cross correlation attains is maximum at the
expected target range delay, but it remains relatively small at all other delays.
The range resolution after decoding corresponds to the baud length, but the
SNR depends on the pulse length.

First use of binary phase codes in atmospheric radars is due to Ioannidis and
Farley (1972) in early incoherent-scatter measurements of the D-region at
Arecibo. They used Barker sequences which have the property that their
correlation sidelobes are within +1 (Barker, 1953). These sequences are
known only for some code lengths _<13 (Turyn, 1968). Figure 1 shows the
13-baud Barker code and its autocorrelation function. The cross-correlation

function of the signal received from a point target with the code is also
shown, for an assumed band-pass frequency response of the receiver. The
finite receiver passband causes a loss in signal power and introduces a finite
group delay. Corrections for these must be applied after decoding.

13

10
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0

|
Barker-13 Code ,_ J[ + + + + + - - + + " + - +

t(llJ Butterworth Filter

IItl r Order 2, width 0.5

 k222
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Lag in units of baud

FIGURE 1. The 13-baud Barker sequence (inset) and its autocorrelation
function. Cross correlation of the code with the receiver output due to a point
target is shown centered at the nominal range delay for the target. The
receiver frequency response is that due to a second-order bandpass
Butterworth filter. The total 3-dB bandwidth of this filter, about the carrier

frequency, is half of the inverse baud length.
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In many other radar experiments, the received signal fades slowly compared
to the inter-pulse period (~1 ms) i.e. the atmospheric medium behaves as a
relatively coherent target over many transmitted pulses. It is then possible to
modulate successive pulses with different phase codes. Particularly useful are
code pairs with complementary property, that the sum of their correlation
sidelobes vanishes exactly [Golay, 1961]. Such code pairs were initially used
in middle atmosphere experiments with the SOUSY and Arecibo radars
[Schmidt et al. 1979, Woodman, 1980]. Since only two different codes are
used, often with coherent averaging of received signal over many transmitted
pulses [Rastogi, 1983], an efficient implementation of the cross-correlation
or decoding scheme is obtained by relegating it after coherent averaging.
Figure 2 shows a 32-bit complementary code pair, and the autocorrelation
function for one of the two codes. Codes in the pair have poor pseudo-noise
properties as evidenced by their high correlation sidelobes at level -t-7 or
-22% of the zero-lag value. These large correlation sidelobes do not exactly
cancel in practice due to transmitter nonlinearities, and due to rapid changes
in the atmospheric medium. This often results in ghost echoes from thin
strong layers of turbulence.

10

5

0

-5

Code A : +++-++-++++---+--+++_++_+___+++_+

Code B : +++--++-++++---+----+--+-+++ .... +-

-
,, ,,i,, ,,i,, ,,i, , f, I,,,,i,,,,I, ,, ,

5 l0 15 20 25 30

Lag in units of baud

FIGURE 2. A 32-baud complementary code pair and the autocorrelation
function for one (A) of these. The zero lag value of 32 is out of scale.
Correlation sidelobes of codes A and B are inverted replicas of each other.
The sum of their autocorrelation functions is 64 at zero lag, but zero
elsewhere. Large sidelobes of magnitudes 3, 5 and 7 do not perfectly cancel
in practice and produce ghost echoes after decoding.
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When the on-line computing resources permit pulse-by-pulse decoding, it is
possible to use complementary code sets (CCS) of binary sequences with the
complementary property, that the correlation sidelobes cancel exactly upon
addition across the set [Tseng and Liu, 1972]. Generation of CCS as feedback
shift register sequences is discussed by Sarwate (1984). The number of
sequences in a CCS depends on the sequence length, e.g. a CCS of 2n codes of
length 2,, -1 can be readily generated, but the limitation on number of codes is
often too restrictive for atmospheric radar applications. Individual codes in a
CCS usually have large correlation sidelobes. An exact cancellation of these
sidelobes would be difficult as with complementary code pairs, and ghost
echoes may arise. An alternative method (Sulzer and Woodman, 1984) is to
first select binary sequences with good correlation sidelobes, and then to
combine an arbitrary number of these in a quasi-complementary code set
(QCCS). Theoretical methods for finding QCCS are apparently unavailable.

Quasi-Complementary Code Sets (QCCS)

The first use of QCCS in atmospheric radar experiments is due to Sulzer and
Woodman (1984). They used an intensive, but partial, computer search for
32-bit QCCS. As indicated above, the search comprises two parts (i) finding a
base set of codes with 'good' correlation sidelobes, and (ii) a method of
combining an arbitrary number of these to form a QCCS with acceptably low
residual sidelobes in the correlation function accumulated over the set.

In discussing QCCS, we first remark that the decoder output is a voltage
signal. If the autocorrelation function of a binary code sequence is r(k) at a
shift k (in units of a baud), then the signal due to a point target will leak at
other range delays as Nr(k) on a voltage basis, and as Nr2(k) on a power basis.
Codes in the base set should, therefore, have a uniformly low correlation
sidelobe level to reduce ghost echoes. The effect of a uniformly distributed
background of random point targets on signal power at any given range is

minimized by requiring that the integrated power Ek_r2(k) in the correlation
sidelobes of a code sequence should be minimum.

Sulzer and Woodman (1984) specified the criterion that the total power in the
correlation sidelobes should be 20% or less than that of the main lobe, i.e.

{Zk,or2(k)} < 0.2 1-2(0).
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With this criterion, they found a base set of -300 codes in a partial search
through -0.7 billion codes. They formed QCCS by selectively combining
codes from this set in groups of four. In an actual experiment, the residual
correlation sidelobe level of a 32-bit QCCS of size 48 was found to be better
than for complementary codes. We have therefore undertaken an exhaustive
search for a base set of 32-bit codes and have devised a simple algorithm for
forming near optimum QCCS of arbitrary size.

New QCCS : Search Criteria and Code Properties

An exhaustive search for a base set of codes with minimum correlation

sidelobe level is a computation intensive task. There are 232or over 4-billion
32-bit codes. Since sequences {aj} and {-aj} have the same autocorrelation
function, even with the sign bit omitted, the search must still be carried
through 231 codes. Turyn (1968) gives the lower bounds on maxk Ir(k)l for
several codes of length up to 34. The lowest value of maxk Ir(k)l is 3 for 32-
bit codes. Lindner (1975) has conducted an exhaustive search for binary
codes with minimum correlation sidelobe level, for code lengths up to 40.

The speed of currently available workstations has enabled us to conduct an
exhaustive sequential search for a base set of 32-bit codes in about 400 hr on a
Sun 3/52. A code is excluded as soon as a correlation sidelobe magnitude
Ir(k)l above 3 is encountered. A total of 1688 codes with correlation sidelobes

within +3 have been found. After excluding the binary complements, only
half of these or 844 codes have been retained in the base set. The size of the

base set agrees with that reported by Lindner (1975).

Codes in the base set of 3130codes found by Sulzer and Woodman (1984) have
an r.m.s, correlation sidelobe level below 1.82, but their maximum sidelobe

level may be as high as 6. Codes in the base set of 844 codes reported above
have a maximum correlation sidelobe level of 3, and a minimum r.m.s level
of 1.52. It includes 104 codes with an r.m.s, sidelobe level Ix;low 1.82. Codes

in this subset have optimum correlation sidelobes in both the absolute and
r.m.s, sense. The envelope of correlation sidelobes in our base set is shown in
Figure 3. For comparison the correlation sidelobes of codes in the sample
QCCS given by Sulzer and Woodman (1984) are also shown.

The task of forming optimum QCCS of a given size from the base set is, in
principle, quite formidable. Selecting a QCCS of m codes from a base set of
size n requires a search through nCm=n!/m!(n-m)! possibilities. In our case
the number of possibilities is too large to exhaust e.g. for m=l 0 and n=844 it
is -4.8 x 1022, and even with n=104 it still is ~2.6 x 1013. It suffices therefore
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to search for QCCS with acceptable properties in terms of a threshold for
sidelobes of accumulated correlation function.

We have sought QCCS with a threshold level of 2 (or 3 for some odd m). A
two-step algorithm is used in which a code is included in the QCCS if it does
not increase the residual correlation sidelobe level, and a finite number of
codes is tried at the last stage while testing for the threshold level. It routinely
yields a QCCS for m<64 in less than 5 min. For a set with m=48, the
correlation at zero lag is 32x48=1536. The correlation sidelobes are 57.7 dB
below the zero-lag value. The theoretical performance of this QCCS is about
6 dB better than the one reported by Sulzer and Woodman (1985), as shown
below in Figure 4. The performance can be improved even further by using
the subset of 104 codes in the base set with optimum correlation sidelobe
levels. An example of a QCCS of 32 codes is appended as Table A-1. Despite
its smaller size, its residual sidelobes at +2 or -54.2 dB are slightly lower than
the QCCS of 48 codes given by Sulzer and Woodman. QCCS of small size are
desirable as they permit a larger Doppler bandwidth.

10

5

0

-5

- ----- Sulzer Woodman
• Alternative Base set

.... I .... I .... I .... I .... I .... I''
0 10 20 30

LAG

FIGURE 3. Envelope of correlation sidelobes for a 32-bit QCCS of 48 codes
given by Sulzer and Woodman(1984), and for the alternative base set of 844
codes described in this paper.



662

I .... I .... I .... I .... I .... I .... I''

0 10 LAG 20 30

FIGURE 4. Residual sidelobes in the sum of autocorrelation functions for a

32-bit QCCS of size 48 given by Sulzer and Woodman (1984), and an for
alternative set. The zero-lag value of 1536 is out of scale.

Discussion and Future Directions

In summary, we have found a base set of 32obit codes with minimum absolute
correlation sidelobes, and have identified a subset with low r.m.s correlation

sidelobes. This base set has been used for obtaining many QCCS with better
residual correlation sidelobe levels than reported earlier. These QCCS
should be useful in middle-atmosphere experiments at any radar installation

with pulse-by-pulse decoding capability.

QCCS of longer length, up to 64, may be useful for mapping the structure of
weak Kelvin-Helmholtz instabilities in the mesosphere, and the transition
region from turbulent scattering to incoherent scattering (at VHF). We have
found a partial base set for 64-bit codes.

A selection criterion may further be imposed on these QCCS in terms of their
ambiguity-function behavior. In UHF (430 MHz) radar experiments, a
constant radial wind of 2.5 rn/s produces a harmonic component of -140 ms
period. The phase change introduced by the medium in 35 ms is _+90° ,

comparable to the phase modulation imposed on the carrier. In probing a
moving medium, the code performance is impaired even for small Doppler
shifts. We are examining the ambiguity functions for QCCS to select the ones
with better performance for Doppler measurements.
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Appendix

The following table gives a sample QCCS. The residual correlation sidelobes
are given in the figure.

TABLE A-1 : An Alternative 32-bit QCCS of 32-bit Codes

COOE LUL RUTOCORRELRTIOH FUNCTION AT LAGS 1 TO 31

¢e4bO6aB

oObce244
afB12462
87aa3124

e6165cbf
dadcebaO
c3fd666b
9cfB156d

Bc3egbb5
ccb507df
b42ebe73

b4b9dfa2
g35387fd

B4e126ae
dlb493fb
8c2aOf64

BcSofegb

e16e6510
a9b6073d
d5621270
dac511fO

ddbbcaOf
g655881c

84eO49ab

c622eO4b

cb2fSfc4
ea6cB73f
bSa28330
aedgcfc2

9t282f38
adB8be7d
8fb6c46a

3 -3-2-3-2-1 2-1 0 3 2-I 2-1 2-I 0 I-2-3 2 1 2 1 0-3-2 1 2-1-2-1
3 1 0-1 2 1 0-3 0-3-2-1 0-3 0-3 2 3 0-I 0 1 2 3 0 3 0 3-2 1 0-1

3 1 2 3 2-I-2 1 2-1 2 3-2 1-2 1-2-I 2 3-2 1-2-3-2-1 2-3 2-3 2-1
3 -3 0-3 0-1 2 3 0-1-2 3 2 1 2-1-2-3 2 3-2 1-2 1 0-3 2 1 0 3 0-1
3 3-2 I-2-1 2 3 0-1-2-1-2 3 0 3-2-3 0 1-2-3-2-3 0 1 2 1 2 3 2 1
3 -3 2 1 2 3 0-3 2 1 0-1 2-I 2-1 0 1-2-3 2-3 0 3-2-I 0-3-2-1-2-I

3 3-2 1 2 1-2-3-2 3 2 1-2 3-2 3 0 1 2 ! 2 3 2-3 2 3-2-1-2-1 2 1
3 -1 2-1-2-1-2-1-2-3-2-3-2-3 0-I 2 1 0-1 2 3-2 3-2 1 2-3 2 1-2 1

3 -1-2-1-2-3 0 3 0 1 2-1 2 1-2 3 0-3-2 3-2-3 2-1 0-3 0 3-2 1-2 1
3 3 2 3 0-1 0 I-2-3 2-3-2-3" 2-3-2 3-2-1 2-1-2 3 2-1 0 I 0 1 2 1
3 -1 0-3-2 3 2-1 2 1-2 1-2 1 0-3 2 3 0-1 2-1 2-1-2 1-2 1 2-1 0 1

3 -3 2 3 0 3-2 1-2 1-2 1 0-1 2-1-2-3 2 1 0 3 2-1 2-I-2 1 0-3 2-1
3 3 2 3-2-1 0 3 2-1-2-1 0-1-2 3 2 1 2-3 0-3 2-3-2 1 0-3 2 1-2 1

3 -3-2-1 0-1 2-3 2-1 2 1 0 3 0-1 0-3 0 1 0 3-2-3 2-1-2-3 0 1 2-1
3 3-2 1 0 1 2 3 2 1 2-1 0-3 0 I 0 3 0-1 0-3-2 3 2 1-2 3 0-1 2 1
3 1 0-3 0-3 0-3 0 1 2 1 2-1-2 3 2 1-2-3-2 3 2-1 0 3 0-1 0 3 0-1

3 -1 0 3 0 3 0 3 0-1 2-1 2 I-2-3 2-1-2 3-2-3 2 1 0-3 0 ! 0-3 0 1
3 1-2-I 2 3-2-3-2 3 0 3-2-I 2-3 0-1-2-3 2 1 0 1-2 3 2 1-2-3-2-1
3 -1-2 1-2-3 2-3-2-3-2-3-2 I 2 3-2-3 2 3-2 3-2-1 2-1-2 3-2 3-2 1
3 -3 2-3 2 3-2 3 0 3-2-1 2 3-2-1 2 1 2 1-2-3 2-3 0 I 2 I-2-1-2-1

3 1 2-3-2-3-2-3-2 I 2 1 0-3-2 1-2-1 2 3 0-1-2 3 2-1 2-1-2-1-2-1
3 3 2 3 2-1 0 3 0-3-2-1 2-1 2 1 0 3-2 I-2 1-2-1 0 1 0 1 2 1 2 1
3 -3 0-3 0 1 2 3-2 1-2 1 0 3 0-1 2 1 0-3 0-1 2 3 2-3-2-1 0 3 0-1

3 -1 0 3 0-1-2 1 2 1 2 3 0-1 2 3-2-3 2-3 0 !-2 3--2-1 2-3 0-3 0 1

3 3-2-3 2 1-2-3 0-1-2 3 2 1 2 1 2 3 2-1 2-3-2-3 0 3-2-1-2-1 2 1
3 I 2 3-2-1 2 1 0 ! 2-3-2 1-2 !-2-1-2 3-2-1 2 3 0 3-2-3 2 1-2-1
3 3-2 1 2-3 2-1-2-1 2-3 0-3-2-3-2 3-2-1 0 3 2-3--2 1 2 3 2 3 2 1
3 -3 0 I-2 3 2 1 2 1-2 3 2 1 0-3 2-1 0 3 2-3-2-1 2-I-2 1-2-1 0-1

3 1-2-1 2-1 0-1 0 3-2-1 2 3-2 3 2 1 2 1-2 I-2-3 0 1 0-3 2-3 2-1
3 1 0-1-2 3 0-1 0-3 2 1-2-1 0 3 2-3 0-3 2-1-2 3 0 I 0 1 2 I 0-1
3 -1 2 1 2-3 0 1 2-1 0-3-2 1 2-3-2-1-2-1 2 3 0 I 2-I 0 3-2 3-2 1
3 -3-2 1 2-1-2 1-2 3-2 1-2-3-2-3-2 3-2-I 2 3 2-3-2-I 2-3 2-1 2-1

32

l_,,,l,,,,l,,,,l,,,,l,ll,l,,,,l,' LAG

10 20 3O

54.2 dB
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FLATLAND DATA ANALYSIS SYSTEM

W. L. Clark and J. L. Green

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, Colorado 80303

I. INTRODUCTION

A major effort of the Flatland radar project is to disseminate understand-

ing and use of clear-air radar data to a broader academic and research

community. Thus, it is important that the original and processed radar data be

easily conveyed to a number of different users at a number of different

facilities. This process of data communication can be greatly facilitated by

providing not only numbers, but also a readily available platform (i.e.,

software and hardware) for displaying and analyzing them, thus eliminating

redundant effort re-developing display and analysis systems.

To meet this need, we are developing an off-the-shelf "plug and play"

workstation. Here, we describe the workstation as presently implemented for

joint use of the Flatland data base betweefi co-investigators in Colorado,

Minnesota, and Illinois. We also discuss some problems associated with the

rapidly changing computer technology.

2. FLATIAkND DATA ANALYSIS SYSTEM

Implementation of the analysis system began in 1985. At that time, it was

necessary to select a computer and the criterion in Table I were used. From
tm tm

the large selection of computer systems then available, the Macintosh _I (

indicates a trademark, detailed in Table 3) and the Compaq Deskpro 386 um com-

puters seemed best suited. Others were either too expensive, not powerful

enough, or not well enough supported with respect to needed peripherals.

Although both the Macintosh II and the Compaq 386 were new machines, the 386

was IBM-PC compatible, and so had a large software base, strong support,

demonstrated user acceptance, and a clear indication of multiple manufacturers

in the near future. The Macintosh II, on the other hand, was supplied by only

one manufacturer and had a different bus than the previous Macintosh line.

This made it uncertain that all the needed peripherals and software could be

obtained. Consequently, the Compaq 386 was selected. At the present time,

there are a number of manufacturers of these IBM PC-compatible 386 machines,

most of which should be suitable for implementing a Flatland workstation. This

computer choice still seems adquate in 1988.

Once the computer system was determined, a study was made to determine

which high-level language was most suited to implementing a system on a PC-

compatible. The decision was made by examining the available driver software

for the peripherals needed, both for this workstation and to actually run and

control the Flatland radar. The only language in common to all the devices

needed was Microsoft C, which we selected. This led directly to the choice of
_m

Graphic as the plotting library package of choice.
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TABLE i

CRITERIA FOR COMPUTER SELECTION

* Computing Power

Speed: I0 MHz or faster clock

Memory available to user program 640 K or more

Open Architecture

• Well Documented Bus

• Available Expansion Slots

* Stability

Upgradability

. Software Upward Compatible

• Peripheral Interfaces Upward Compatible

Third Party Support
Good Track Record

* Cost

Computer

- Software

- Peripherals

* Availability

- Computer

- Software

• High Level Languages

• Well-documented and Debugged Operating System

• Applications Libraries

• Peripheral Drivers

Peripherals

• 1600 cpi 9-track Tape Interface, Industry Compatible

• Readily Available with Multiple Sources

Appropriate Commercial Packages

* General Acceptance in User Community

Much of the software for routine data analysis for such a workstation is

experlment-dependent, and will be done in-house, utilizing Microsoft C.

However, many scientific uses of the data are one-time uses, and although the

inherent constraints of such packages in the past often hindered, rather than

aided, the analysis, the savings inherent in avoiding development of I/O,

command processing, and quality graphics products motivate us to at least

evaluate the state-of-the-art commercial packages. We have had a chance to

test GAUSS =m and MATLAB em, Both seem to have the needed power and flexibility.

Our preliminary choice is GAUSS because it is less expensive.

The exact make and model for the printer is not important, but parts of
t " Kmthe system software may no work if Epson FX compatibility is not available.

Similarly, a plotter is most likely to be supported if it is HPGL rm (HP

Graphics Language) compatible.

The choice of a particular WORM optical disk drive system was somewhat

arbitary. We chose a system that provides good performance per dollar spent

and that seems to be gaining in popularity. However, which current system, if

any, willtbecomem . "industry standard" is,uncertain. The Storage Dimensions
LaserStor optlcal subsystem uses 5.25 double-sided optical disks. Each side

of the optical disk has an unformatted capacity of about 400 MBytes. Only one

side is available at a time, since the disk must be turned over to gain access

to the other side.

The 9-track tape drive interface has not yet been selected. Any 1600 cpi

drive will work, but custom software may have to be written to support the

interface card.
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More specific identification of the components of the system are detaiiled

in Table 2.

TABLE 2

FLATLAND DATA WORKSTATION COMPONENTS

I. Hardware

A. Compaq 386 or compatible microcomputer

i. 80386 CPU

2. EGA color graphics card (VGA would be better)

3. 40 MByte hard disk

4. 1.2 MByte 5.25" floppy disk drive

5. 3 MByte RAM

6. 80387 numeric co-processor chip

B. Storage Dimensions' LaserStor _m LS800 Optical Disk Drive

C. Epson FX-86e dot matrix printer (other Epson FX-

compatibles would do)

D. HP 7475A 6-pen plotter

II. Software

A. MS-DOS operating system

B. Microsoft program editor (other editors would also work)

C. Microsoft C 5.1 compiler

D. Scientific Endeavors' Graphic tm C plotting library

E. Aptech Systems' GAUSS tm 2.0 matrix handling system

3. SUMMARY

Today's personal computers have sufficient power to handle the data

analysis requirements of the Flatland radar experiment. Because of the low

cost so implied, and the easy availability of such systems, it is feasible to

broaden the meaning of a data base to include the hardware and software on

which it is manipulated. This should facilitate exchange of data among a broad

set of co-investigators. We are partially through the process of implementing

such a system, sharing data between stations in several states. The basic

hardware and software platforms are detailed in Table 2. Although all of the

components in this system are vulnerable to becoming obsolete through the

advancement of technology, we feel the choices of an IBM-PC Compatible, 80386-

based microcomputer, and the C programming language, are likely to continue as

good choices for the next few years. The choices for data archiving and the

commercial data processing package have a more uncertain future.
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COMPAQDeskpro

EPSONFX

GAUSS

Graphic

HP 7475A

IBM-PC

LaserStor

Maclntosh II

MATLAB

Microsoft C

MS-DOS

TABLE 3

TRADE MARKS

COMPAQ Computer Corporation

Epson America, Inc.
2780 Lomita Boulevard

Torrance, CA 90505

Aptech Systems, Inc.

26250 - 196th Place S. E.

Kent, WA 98042

(206) 631-6679

Scientific Endeavors Corporation

Route 4, Box 79

Kingston, TN 37763

(615) 376-4146

Hewlett Packard

San Diego Division
16399 West Bernardo Driw_

San Diego, CA 92127-9989

International Busines Machines Corp.
1-800-447-4700

Storage Dimensions

2145 Hamilton Avenue

San Jose, CA 95125-9870

(408) 979-0300

Apple Computer

10260 Bandley Drive

Cupertino, CA 95014

The Math Works, Inc.

21 Eliot Street

South Natick, MA 01760

(508) 653-1415

Microsoft

10700 Northrup Way

Bellevue, WA 98004
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PREPARATION OF AN ARCHIVAL DATA BASE FOR THE POKER FLAT, ALASKA, MST RADAR

A. C, Riddle

Cooperative Institute for Research in the Environmental Sciences

University of Colorado

Boulder, Colorado 80305

K. S. Gage and B. B. Balsley

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, Colorado 80303

i. THE DATA

Data from the Poker Flat, Alaska, MST radar operated by the NOAA Aeronomy

Laboratory have been recorded from March 1979 through June 1985. The raw data

base included Doppler spectral information, but most analysis to date has been

done using a "compacted" data base consisting only of quantities derived from

the Doppler spectra. The derived quantities are the velocity, width and signal

power of the greatest peak on the spectrum at each height (CARTER et al., 1983;

CLARK AND CARTER, 1983). For many records the largest peak corresponds to a

return signal from the atmosphere and the derived parameters are of great

interest in studies of the atmosphere. These records we will call "genuine"

signals. Where there is no return echo, the Doppler spectrum consists solely

of random noise and the derived parameters contain no useful information

regarding the atmosphere. These signals we shall call "noise". There also

exist records for which the largest peak corresponds to power reflected from an

aircraft, some interfering radio signal or other known or unknown causes.

These signals we shall call "spurious". Most persons using the compacted data

set would like to select and concentrate only on the genuine signal records and

ignore the spurious and noise records.

2. SIMPLE SELECTION

The simplest selection technique commonly used to separate "genuine"

signals from noise is based on the fact that the likelihood of a noise signal

exceeding some threshold value is a decreasing function of the threshold level.

By setting a threshold above which few noise signals are expected to exist,

most noise signals can be eliminated. However, the higher and safer the

threshold, the more genuine signals are eliminated from further analysis.

3. MORE COMPLICATED SELECTION

Use of other characteristic differences between noise and genuine signals

allows more sophisticated selection processes to be developed. One such

characteristic is the maximum expected velocity. However, for good technical

reasons, the radar parameters are often set so that the maximum measurable

velocity and maximum expected velocity are quite close. When this is the case,

not much is gained by rejecting velocities greater than the maximum expected

velocity.

Continuity of velocity is a characteristic which provides a similar but

much more effective selection mechanism. When the timescale for significant

variation of velocity is greater than the time between measurements, a very

effective filter for removing noise can be made. The filter uses a velocity

acceptance window whose center is an estimate of the current mean velocity and

whose size is based on an estimate of the likely variation. Much of the Poker
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Flat dataanalysishasbeenperformedondatasubjectedto sucha filter. For
computationalefficiency thewindowwascentered at the running mean of the

velocity and the size was based on a running mean of the absolute difference
between the mean and the current value. The window size was constrained to be

larger than a minimum value to accommodate the changing character of the wind

field with time. This type of filter is very effective in removing what are

commonly called "outllers". However, in common with other "consensus"-type

filters, it is possible for the window to lock onto spurious data values when

these values become both very frequent and reasonably consistent.

One characteristic of spurious signals that often distinguishes them from

genuine signals is their rapid onset, often in many range gates simultaneously.

A primitive selection process often used on Poker Flat data kept track of the

total number of significant signals at each time and rejected records when the

total number increased more rapidly than normal or exceeded some limit.

4. THE CLEANING SELECTION PROCESS

For future analysis of the Poker Flat data it was decided that, rather

than continue to subject the original data set again and again to a variety of

selection algorithms, it would be better to subject the data set to an optimal

cleaning process and save the resulting "cleaned" data set. In addition to

providing users with a better data set containing a minimum of spurious or

noise data, this approach minimizes the volume of data by not including any of

the rejected data.

Encouraged by the success of the earlier algorithms we decided that the

cleaning process should be an elaboration of those algorithms.

For a given receiver and time the apparent signal at each range is ranked

according to signal strength. The rank takes the values 4 (if above threshold)

through 3 (if in the range 3 dB below threshold), 2 (if in the range 3 dB below

rank 3) and i (if even lower). The ranges with rank i echoes are used only to

determine a background noise level as they almost certainly contain no genuine

signals. At the same time, a record quality indicator is formed by examining

the character of signals of ranks 3 and 4. As noted before, spurious signals

often appear over many range gates and so a sudden increase in the number of

signals of high rank may indicate spurious signals. Also, the presence of

strong signals in the range 35 to 45 km, where there are normally no genuine

signals, is a potential trouble indicator. The quality indicator ranges from 0

(spurious signals likely) to 3 (spurious signals unlikely). The quality in-

dicator is also lowered for one set when adjacent sets have low values.

An additional indicator is now formed at each range by adding the signal

ranks at that range for the ten data sets on each side of the one under con-

sideration. This indicator essentially measures the likelihood of a

significant echo at each range.

Now the signals of ranks 2 and 3 are examined in the light of the three

indicators above. The rank is raised to 4 if the likelihood of significant

echoes is high at this range or the two adjacent ranges on either side. It is

lowered to i if the same likelihood measures are low. The criteria for raising

or lowering are more or less stringent according to both the, original rank and

the quality indicator for that record. This process tends to select as genuine

those signals occurring in close proximity to other genuine signals, while at

the same time rejecting spurious signals that occur at many heights or occur

randomly The process is without directional bias in that time or range order

could be reversed without changing the results. The drawback is that it tends

to reject meteor echoes which, because of their random occurrence characteris-

tic, look more like noise than genuine signals. However, as many meteor echoes
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span several range gates, or are very strong, the criteria still do pass many

meteor echoes.

Having made an initial selection, attention is turned to the velocity and

width parameters. The window filter described earlier is applied separately to

each parameter. In order to keep the amount of computation within reasonable

bounds the running mean and absolute deviation technique of the simpler selec-

tion process are used. However, in an attempt to reduce the directional

sensitivity of that process, a contribution is added at each step from a data

set in advance of the one under consideration. An added refinement is that the

contributions are weighted according to the quality indicator, more weight

being given to the data of higher quality. Only when both velocity and width

parameter values are within the appropriate window is the signal accepted as

genuine. After each height has been examined, the window mean and size values

are subjected to a smoothing filter (as a function of range). At all ranges a

simple triangular weighted boxcar, is applied. This smoothing takes advantage

of the continuity of the data in range and is useful to help prevent the win-

dows locking on to persistent spurious data values. Such bad values are quite

common in the two lower range gates where receiver saturation often generates

false peaks in the spectra. At ranges for which there is no genuine signal, an

additional component of the filter ensures that the window mean tends towards

zero and the window size to the lower limit, This ensures that after a sig-

nificant data gap the filter is not biased towards data values that existed

previously. The window lower limits are different below and above 40 km and

also different for vertical and oblique data to accommodate the different

character of the data in these ranges. Because the timescale for parameter

variation in the vertical data is closer to the typical sampling p_riod (i

min.), the window filters are slightly less effective on the vertical data than

on the oblique data.

Operation at Poker Flat was such that aliasing, although not common, was

occasionally present in the records. While examining the velocity in the step

above, the data are examined for potential aliasing, which is corrected if
found.

Start up for the process filters is accomplished by letting the program

see a mirror image copy (i.e., time reversed) of the first ten data sets. At

the end of a contiguous set of data a similar mirror ensures that the process

can operate up to the final set of data records. A break in the data is as-

sumed to occur whenever a time gap larger than 30 minutes existed, or whenever

the instrument parameters changed significantly.

After the computer program has made its decisions, the data are displayed

in two panels. In the first the velocity for all signals originally of rank 3

or 4 is presented. This data is more than normally would be accepted by the

simpler selection processes and contains a higher percentage of spurious or

noise signals than is usually considered reasonable. However, it allows the

operator to get a good picture of the character of the data at that time. On

the second panel is displayed the data selected by the computer using the

algorithms above. The operator can remove any of the data on that display

which still seems to be spurious. When the operator has finished examining the

data the remaining acceptable data are written to tape and are used as the

basis for the "cleaned" data set.

The program currently takes about one hour on a Sun workstation to process

the data originally collected in one day. Although onerous, this is an accept-

able level of effort.



672

5. ACKNOWLEDGEMENT

Much of the actual computer processing has been done by Ms. Teresa Olsen,

Mr. Stephen Corner, and Mr. Hohammad Seyed-Madani, for which we are very thank-
ful.

The Poker Flat Data Archive is being produced with the support of the

National Science Foundation under Agreement No. ATM-85174]_.

6. REFERENCES

Carter, D.A., B.B. Balsley, and W.L. Ecklund (1980), The Poker Flat MST Radar:

Signal analysis and data processing technique with examples, Preprint

volume, AMS 19th Conference on Radar Meteorology, April 15-18, Miami

Beach, FL, 563-567.

Clark, W.L., and D.A. Carter (1980), Real time scaling of atmospheric

parameters from radars using the MST technique, Preprint volume, AMS 19th

Conference on Radar Meteorology, April 15-18, Miami Beach, FL, 599-604.



673

AUTHOR INDEX

A. Agarwal -- 503, 523
N. Ao -- 282
T. Aso -- 57
J. P. Avery -- 64
S. K. Avery -- 44, 64, 182, 416, 498, 510
M. Azouit -- 222
P. Balamuralidhar -- 618
B. B. Balsley -- 44, 493, 498, 510, 516, 528, 556, 669
F. Baudin -- 511
E. Bazile -- 43
A. Bhatia -- 618
R. R. Beland -- 432
C. Bourdier -- 511,564
G. Brasseur -- 449
J. H. Brown -- 432
D. A. Carter -- 384, 413,493, 498,510, 528, 556, 609
O. Castillo G. -- 451
J. K. Chao -- 89, 115, 121,147, 278
A. J. Chen -- 494
C.-C. Chiu -- 424
Y.-H. Chu -- 89, 100, 106, 115, 121, 147
W. L. Clark -- 367,432, 500, 522, 593, 604, 665
S. A. Cohn -- 179, 456
R. L. Collins -- 355
C. R. Cornish -- 311
M. Crochet -- 43, 146, 222, 491,511,564
P. E. Currier -- 182, 413, 528, 556, 609, 641
F. Cuq -- 43
P. Czechowsky -- 83, 459
F. Dalaudier-- 146
A. Desautez -- 511
G. D. Dester -- 439
H. Doji-- 650
F. D. Eaton -- 432
W. L. Ecklund -- 1, 44, 384, 413,493, 498, 510, 516, 518, 528,529, 556, 609, 641
L. D. Favier -- 432
S. J. Franke -- 126, 185, 210, 242, 267,439, 476
G. J. Fraser -- 162
D. C. Fritts -- 344, 350, 353
I.-J. Fu -- 192, 278
S. Fukao -- 101,257, 282, 288, 344, 350, 353, 416, 535, 562, 628, 634, 650
K. S. Gage -- I, 39, 44, 292, 367, 377, 384, 432, 493,498, 500, 510, 516, 669
T. Gal-Chen -- 17
M. A. Geller -- 392, 446 "
O. Ghebrebrhan -- 222
J. C. Gille -- 449
J. L. Green -- 39, 367, 377, 432, 439, 500, 522, 593, 604, 665
C. Gue'rin -- 511
T. Hall -- 168
T. L. Hansen -- 472
W. H. Hatch -- 432
J. R. Hines -- 432
I. Hirota-- 261
M. H. Hitchman -- 449



674

W. K. Hocking -- 242, 309, 401,489
T.S. Hsu-- 115
H. M.Ierkic V. -- 454, 611
B. Inhester -- 459
T. Inoue -- 257
A. R. Jain -- 597, 623
V. K. Jain -- 618
P. Johnston -- 541
G. O. L.Jones -- 126
R. J. Jost -- 530
S. Kato -- 56, 101,257,282, 288, 344, 350, 353, 416, 535, 562, 628, 634, 650
K. S. Kelleher-- 530
M. C. Kelley -- 168
U. Khan -- 162
Y.-W. Kiang -- 424
I. Kimura-- 650
V. Klaus -- 511
J. Klostermeyer -- 299, 495, 622
E. Kudeki -- 203
A. Kulkami -- 618
F.-S. Kuo-- 131, 138
C. LaHoz -- 107,126, 168, 185, 210, 242, 267,476, 544
M. F. Larsen -- 9, 24, 311
K. Lawry -- 242
M. Leiva C. -- 451
W. Li -- 288,634
C. H. Liu -- 89, 115, 121, 147,192, 210, 267, 278,439
S.-I. Liu -- 138
N. D. Lloyd -- 467
D,-R, Lu -- 288, 515, 634
H.-Y. Lue -- t31
A. Mabres -- 510
A. H. Manson -- 156, 404, 467
Y. Masuda -- 562
P. T. May -- 10l, 628
J. R. McAfee -- 498
C. E. Meek -- 156, 393, 404, 467, 472
K. Moran -- 413
R. Mugica -- 510
E. A. Murphy -- 432
G. D. Nastrom -- 1,292, 367, 377,432, 500
R. Ney -- 511
S. M. Notosuyidno -- 516
R. L. Obert -- 64
C. J. Pan -- 192
M. Pardede -- 516
P. K. Pasricha -- 597
Y. G. K. Patro -- 618, 643
G. Penazzi -- 511
W. A. Peterson -- 432
M. Petitdidier -- 511
N. N. S. S. R. K. Prasad -- 618
P. Qunity -- 511
F. M. Ralph -- 43
P. K. Rastogi -- 228, 355, 567, 603, 656
B. M. Reddy -- 597
I. M. Reid -- 83,340, 459



675

A. D. Richmond -- 416
A. C. Riddle -- 669
M. T. Rietveld -- 168, 476
R. Rodriguez -- 510
C. D. Rogers -- 449
J. R/Sttger -- 68, 89, 107, 115, 126, 168, 185, 192, 210, 242, 267, 278, 476, 544, 549
R. Ri.ister -- 340, 459
B. K. Sarkar -- 503, 523
K. Sato -- 261,334
T. Sato -- 101,257,282, 288, 344, 350, 353, 535, 562, 628, 634, 650
K. F. Scheucher-- 228
G. Schmidt -- 459
C. Sidi -- 146
M. E. Sienkiewicz -- 17
S. A. Smith -- 350, 353
G. Sobolewski -- 656
J. Soegijo -- 516
G. R.Stitt -- 439
T. Sturk -- 549
S.-Y. Su -- 494
K. R. Suresh Nair -- 643
W. E. Swartz -- 168
T. Takami -- 562
S.-I. Taniguchi -- 535
L. Thomas -- 517
P. B, Tole -- 523
T. Trondsen -- 472
T. Tsuda -- 101,257, 282,288, 344, 350, 353, 416, 535, 562, 628, 634,650
J. S. Van Baelen -- 416
T. E. VanZandt -- 257, 344, 350, 353, 367, 377,432, 450, 500
S. V, Venkateswaran -- 43
J. Vernin -- 222
R. A. Vincent -- 237,489
E. J. Violette -- 510
G. Viswanathan -- 508
G. Wannberg -- 476, 544, 549
J. M. Warnock -- 39, 432, 500, 528, 593
B. Weber -- 413
J. J. Wilcox -- 530
P. J. S. Williams -- 544
K. J. Winser -- 126
R. F. Woodman -- 44, 89, 100, 106, 203, 451,510, 611
B. Wu -- 288
D. Wuertz -- 413
M. Yamamoto -- 257, 282, 288, 535, 628, 634
P. Yang -- 288
J. G. Yoe -- 24
T. Yokoi -- 257
E. P. Zipser -- 24

* U.S. GOVERNMENTPRINTING OFFICE : 1989 0 - 248-752













VolUme

1

2

3

8

9

10

11

12

13
14

15
16

17

18
19
20

21

22

23
24
25
26

27

28

CUMULATIVE LISTING FOR THE MAP HANDBOOK

Contents

National Plans, PMP-I, PMP-2, PMP-3 Reports, Approved

MAP Projects

Symposium on Middle Atmosphere Dynamics and Transport
PMP-5, MSG-I, MSG-2, MSG-3 Reports, Antarctic Middle

Atmosphere Project (AMA), EXOS-C Scientific Observations,

WMO Report No. 5., Updated Chapter 2 of MAP Planning
Document, Condensed Minutes of MAPSC Meetings

Proceedings of MAP Assembly, Edinburgh, August 1981
Condensed Minutes of MAPSC Meetings, Edinburgh,

Proceedings of MAP Open Meeting, Hamburg, August 1981,

A Catalogue of Dynamic Parameters Describing the Variability of
the Middle Stratosphere during the Northern Winters
MAP Directory
Acronyms, Condensed Minutes of MAPSC Meetings, Ottawa,

May 1982, MAP Projects, National Reports, Committee,
PMP, MSG, Workshop Reports, Announcements, Corrigendum
MAP Project Reports: DYNAMICS, GLOBUS, and SSIM, MSG-7

Report, National Reports: Czechoslovakia, USA
URSI/SCOSTEP Workshop on Technical Aspects of MST Radar,

Urbana, May 1983
International Symposium on Ground-Based Studies of the Middle
Atmosphere, Schwerin, May 1983
Condensed Minutes of MAPSC Meetings, Hamburg, 1983, Research
Recommendations for Increased US Participation in the Middle

Atmosphere Program, GRATMAP and MSG-7 Reports
Coordinated Study of the Behavior of the Middle Atmosphere in

Winter (PMP- 1) Workshops
Ground-Based Techniques
URSI/SCOSTEP Workshop on Technical Aspects of MST Radar,
Urbana, May 1984

Balloon Techniques
Atmospheric Structure and its Variation in the Region 20 to 120 km:
Draft of a New Reference Middle Atmosphere
Condensed Minutes of MAPSC Meeting, Condensed Minutes of
MAP Assembly, MAP Project, MSG, and National Reports
MAP Symposium, Kyoto, November 1984

Rocket Techniques
URSI/SCOSTEP Workshop on Technical and Scientific Aspects

of MST Radar, Aguadilla, October 1985
MAPSC Minutes, ATMAP Workshop, Atmospheric Tides Workshop,

MAP/WINE Experimenters Meetings, National Reports: Coordinated Study
of the Behavior of the Middle Atmosphere in Winter
Middle Atmosphere Composition Revealed by Satellite Observations
Condensed Minutes of MAPSC Meetings, Toulouse, June/July 1986
MAP Directory

First GLOBMET Symposium, Dushanbe, August 1985
MAPSC Minutes, Abstracts and Report of Workshop on Noctilucent

Clouds, Boulder,
COSPAR Symposium 6, The Middle Atmosphere After MAP,Espoo,
July 1988, MAPSC Minutes, Espoo, July 1988; Workshop on
Nootilucent Clouds, Tallinn, July 1988
URSI/SCOSTEP Workshop on Technical and Scientific Aspects of
MST Radar, Kyoto, November/December 1988

Publication Date

June 1981

June 1981

November 1981

April 1982

May 1982

November 1982
December 1982

July 1983

December1983

May 1984

June 1984

July 1984

November 1984
December 1984

June 1985
July 1985

August 1985

Decembex1985
March 1986
June 1986

July 1986

July 1986
September 1986
Deeember1986

May 1987

August 1987
June 1988
October1985

April 1989

August 1989




